ArticleOriginal scientific text

Title

The Oka-Weil theorem in topological vector spaces

Authors 1

Affiliations

  1. Department of Mathematics, Pedagogical Institute 1, Hanoi, Vietnam

Abstract

It is shown that a sequentially complete topological vector space X with a compact Schauder basis has WSPAP (see Definition 2) if and only if X has a pseudo-homogeneous norm bounded on every compact subset of X.

Bibliography

  1. R. M. Aron and M. Schottenloher, Compact holomorphic mappings on Banach spaces and the approximation property, J. Funct. Anal. 21 (1976), 7-30.
  2. A. Bayoumi, The Levi problem and the radius of convergence of holomorphic functions on metric vector spaces, in: Lecture Notes in Math. 834, Springer, 1981, 9-32.
  3. A. Bayoumi, Bounding subsets of some metric vector spaces, Ark. Mat. 18 (1980), 13-17.
  4. A. Martineau, Sur une propriété caractéristique d'un produit de droites, Arch. Math. (Basel) 11 (1960), 423-426.
  5. C. Matyszczyk, Approximation of analytic and continuous mappings by polynomials in Fréchet spaces, Studia Math. 60 (1977), 223-238.
  6. P. L. Noverraz, Pseudo-convexité, Convexité Polynomiale et Domaines d'Holomorphie en Dimension Infinie, North-Holland Math. Stud. 3, Amsterdam 1973.
Pages:
255-262
Main language of publication
English
Received
1988-11-05
Accepted
1989-08-03
Published
1991
Exact and natural sciences