ArticleOriginal scientific text
Title
The Oka-Weil theorem in topological vector spaces
Authors 1
Affiliations
- Department of Mathematics, Pedagogical Institute 1, Hanoi, Vietnam
Abstract
It is shown that a sequentially complete topological vector space X with a compact Schauder basis has WSPAP (see Definition 2) if and only if X has a pseudo-homogeneous norm bounded on every compact subset of X.
Bibliography
- R. M. Aron and M. Schottenloher, Compact holomorphic mappings on Banach spaces and the approximation property, J. Funct. Anal. 21 (1976), 7-30.
- A. Bayoumi, The Levi problem and the radius of convergence of holomorphic functions on metric vector spaces, in: Lecture Notes in Math. 834, Springer, 1981, 9-32.
- A. Bayoumi, Bounding subsets of some metric vector spaces, Ark. Mat. 18 (1980), 13-17.
- A. Martineau, Sur une propriété caractéristique d'un produit de droites, Arch. Math. (Basel) 11 (1960), 423-426.
- C. Matyszczyk, Approximation of analytic and continuous mappings by polynomials in Fréchet spaces, Studia Math. 60 (1977), 223-238.
- P. L. Noverraz, Pseudo-convexité, Convexité Polynomiale et Domaines d'Holomorphie en Dimension Infinie, North-Holland Math. Stud. 3, Amsterdam 1973.