ArticleOriginal scientific text
Title
Some existence results for solutions of differential inclusions with retardations
Authors 1, 1, 1
Affiliations
- Department of Mathematics, University of Alberta, Edmonton, Alberta, Canada
Abstract
Using the topological transversality method of Granas we prove an existence result for a system of differential inclusions with retardations of the form y'' ∈ F(t,y,y',Φ(y)). The result is applied to the study of the existence of solutions to an equation of the trajectory of an r-stage rocket with retardations.
Keywords
boundary value problem, differential inclusion with retardations, topological transversality
Bibliography
- C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Math. 580, Springer, 1977.
- K. C. Chang, The obstacle problems and partial differential equations with discontinuous nonlinearities, Comm. Pure Appl. Math. 33 (1980), 117-146.
- J. Dugundji and A. Granas, Fixed Point Theory, Vol. 1, PWN, Warszawa 1982.
- J. Duvallet, A theorem of existence for discontinuous differential systems with two point boundary conditions, Nonlinear Anal. 13 (1989), 43-51.
- L. H. Erbe and W. Krawcewicz, Nonlinear boundary value problems for differential inclusions y'' ∈ F(t,y,y'), this issue, 195-226.
- L. H. Erbe and K. Schmitt, On solvability of boundary value problems for systems of differential equations, J. Appl. Math. Phys. 38 (1987), 184-192.
- M. Frigon, Application de la théorie de la transversalité topologique à des problèmes non linéaires pour certaines classes d'équations différentielles ordinaires, Dissertationes Math. 296 (1990).
- A. Granas, Homotopy extension theorem in Banach spaces and some of its applications to the theory of nonlinear equations, Bull. Acad. Polon. Sci. 7 (1959), 387-394.
- A. Granas et Zine el Abdine Guennoun, Quelques résultats dans la théorie de Bernstein-Carathéodory de l'équation y'' = f(t,y,y'), C. R. Acad. Sci. Paris Sér. I 306 (1988), 703-706.
- A. Granas, R. Guenther and J. W. Lee, Nonlinear boundary value problems for ordinary differential equations, Dissertationes Math. 244 (1981).
- A. Granas, R. Guenther and J. W. Lee, On a theorem of S. Bernstein, Pacific J. Math. 74 (1978), 78-82.
- A. Granas, R. Guenther and J. W. Lee, Nonlinear boundary value problems for some classes of ordinary differential equations, Rocky Mountain J. Math. 10 (1980), 35-58.
- J. Haddad and J. M. Lasry, Periodic solutions of functional differential inclusions and fixed points of G-selectionable correspondences, J. Math. Anal. Appl. 110 (1983), 295-312.
- P. Hartman, Ordinary Differential Equations, Wiley, New York 1964.
- T. Kaczyński, Topological transversality and nonlinear equations in locally convex spaces, preprint, 1987.
- W. Krawcewicz, Contribution à la théorie des équations non linéaires dans les espaces de Banach, Dissertationes Math. 273 (1988).
- T. Pruszko, Topological degree methods in multivalued boundary value problems, Nonlinear Anal. 5 (9) (1981), 953-973.
- T. Pruszko, Some applications of the topological degree theory to multivalued boundary value problems, Dissertationes Math. 229 (1984).
- C. A. Stuart, Differential equations with discontinuous nonlinearities, Arch. Rational Mech. Anal. 63 (1976), 59-75.