A classification theorem is obtained for submanifolds with parallel second fundamental form of an 𝑆-manifold whose invariant f-sectional curvature is constant.
Departamento de Algebra, Computación, Geometría y Topología, Facultad de Matemáticas, Universidad de Sevilla, Apartado de Correos 1.160, 41080 Sevilla, Spain
Departamento de Algebra, Computación, Geometría y Topología, Facultad de Matemáticas, Universidad de Sevilla, Apartado de Correos 1.160, 41080 Sevilla, Spain
Departamento de Algebra, Computación, Geometría y Topología, Facultad de Matemáticas, Universidad de Sevilla, Apartado de Correos 1.160, 41080 Sevilla, Spain
Bibliografia
[1] D. E. Blair, Geometry of manifolds with structural group U(n) × O(s), J. Differential Geom. 4 (1970), 155-167.
[2] D. E. Blair, On a generalization of the Hopf fibration, An. Ştiinţ Univ. 'Al. I. Cuza' Iaşi 17 (1) (1971), 171-177.
[3] D. E. Blair, G. D. Ludden and K. Yano, Differential geometric structures on principal toroidal bundles, Trans. Amer. Math. Soc. 181 (1973), 175-184.
[4] J. Erbacher, Reduction of the codimension of an isometric immersion, J. Differential Geom. 5 (1971), 333-340.
[5] I. Hasegawa, Y. Okuyama and T. Abe, On p-th Sasakian manifolds, J. Hokkaido Univ. Ed. Sect. II A 37 (1) (1986), 1-16.
[6] M. Kobayashi and S. Tsuchiya, Invariant submanifolds of an f-manifold with complemented frames, Kôdai Math. Sem. Rep. 24 (1972), 430-450.
[7] S. Tanno, Sasakian manifolds with constant ψ-holomorphic sectional curvature, Tôhoku Math. J. 21 (1969), 501-507.
[8] K. Yano, On a structure defined by a tensor field f of type (1,1) satisfying f³ + f = 0, Tensor 14 (1963), 99-109.