ArticleOriginal scientific text
Title
Periodic-Neumann boundary value problem for nonlinear parabolic equations and application to an elliptic equation
Authors 1
Affiliations
- Departamento de Análisis Matemático, Facultad de Matemáticas, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
Abstract
In this paper we study the periodic-Neumann boundary value problem for a class of nonlinear parabolic equations. We prove a new uniqueness result and study the structure of the set of solutions when there exist more than one solution. The ideas are applied to a Neumann problem for an elliptic equation.
Bibliography
- S. Ahmad, A resonance problem in which the nonlinearity may grow linearly, Proc. Amer. Math. Soc. 92 (1984), 381-384.
- H. Amann, Periodic solutions of semilinear parabolic equations, in: Nonlinear Analysis, Academic Press, New York 1978, 1-29.
- D. W. Bange, Periodic solutions of a quasilinear parabolic differential equation, J. Differential Equations 17 (1975), 61-72.
- J. W. Bebernes and M. Martelli, On the structure of the solution set for periodic boundary value problems, Nonlinear Anal. 4 (1980), 821-830.
- J. W. Bebernes and K. Schmitt, Invariant sets and Hukuhara-Kneser property for systems of parabolic partial differential equations, Rocky Mountain J. Math. 7 (1977), 557-567.
- L. Cesari, Functional analysis, nonlinear differential equations and the alternative method, in: Nonlinear Functional Analysis and Differential Equations, Marcel Dekker, New York 1976, 1-197.
- L. Cesari and R. Kannan, An abstract theorem at resonance, Proc. Amer. Math. Soc. 63 (1977), 221-225.
- L. Cesari and R. Kannan, An existence theorem for periodic solutions of nonlinear parabolic equations, Istit. Lombardo Accad. Sci. Lett. Rend. A 116 (1985), 19-26.
- A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs, N.J., 1964.
- R. Kannan and V. Lakshmikantham, Existence of periodic solutions of semilinear parabolic equations and the method of upper and lower solutions, J. Math. Anal. Appl. 97 (1983), 291-299.
- P. J. McKenna, Uniqueness of solutions for semilinear equations at resonance, Nonlinear Anal. 2 (1978), 235-237.
- J. Mawhin, Semi-coercive monotone variational problems, Acad. Roy. Belg. Bull. Cl. Sci. (5) 73 (1987), 118-130.
- J. J. Nieto, Periodic solutions of nonlinear parabolic equations, J. Differential Equations 60 (1985), 90-102.
- J. J. Nieto, Nonuniqueness of solutions for semilinear elliptic equations at resonance, Boll. Un. Mat. Ital. (6) 5-A (1986), 205-210.
- J. J. Nieto, Decreasing sequences of compact absolute retracts and nonlinear problems, Boll. Un. Mat. Ital. (7) 2-B (1988), 497-507.
- T. I. Seidman, Periodic solutions of a nonlinear parabolic equation, J. Differential Equations 19 (1975), 242-257.