ArticleOriginal scientific text

Title

Periodic-Neumann boundary value problem for nonlinear parabolic equations and application to an elliptic equation

Authors 1

Affiliations

  1. Departamento de Análisis Matemático, Facultad de Matemáticas, Universidad de Santiago de Compostela, Santiago de Compostela, Spain

Abstract

In this paper we study the periodic-Neumann boundary value problem for a class of nonlinear parabolic equations. We prove a new uniqueness result and study the structure of the set of solutions when there exist more than one solution. The ideas are applied to a Neumann problem for an elliptic equation.

Bibliography

  1. S. Ahmad, A resonance problem in which the nonlinearity may grow linearly, Proc. Amer. Math. Soc. 92 (1984), 381-384.
  2. H. Amann, Periodic solutions of semilinear parabolic equations, in: Nonlinear Analysis, Academic Press, New York 1978, 1-29.
  3. D. W. Bange, Periodic solutions of a quasilinear parabolic differential equation, J. Differential Equations 17 (1975), 61-72.
  4. J. W. Bebernes and M. Martelli, On the structure of the solution set for periodic boundary value problems, Nonlinear Anal. 4 (1980), 821-830.
  5. J. W. Bebernes and K. Schmitt, Invariant sets and Hukuhara-Kneser property for systems of parabolic partial differential equations, Rocky Mountain J. Math. 7 (1977), 557-567.
  6. L. Cesari, Functional analysis, nonlinear differential equations and the alternative method, in: Nonlinear Functional Analysis and Differential Equations, Marcel Dekker, New York 1976, 1-197.
  7. L. Cesari and R. Kannan, An abstract theorem at resonance, Proc. Amer. Math. Soc. 63 (1977), 221-225.
  8. L. Cesari and R. Kannan, An existence theorem for periodic solutions of nonlinear parabolic equations, Istit. Lombardo Accad. Sci. Lett. Rend. A 116 (1985), 19-26.
  9. A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs, N.J., 1964.
  10. R. Kannan and V. Lakshmikantham, Existence of periodic solutions of semilinear parabolic equations and the method of upper and lower solutions, J. Math. Anal. Appl. 97 (1983), 291-299.
  11. P. J. McKenna, Uniqueness of solutions for semilinear equations at resonance, Nonlinear Anal. 2 (1978), 235-237.
  12. J. Mawhin, Semi-coercive monotone variational problems, Acad. Roy. Belg. Bull. Cl. Sci. (5) 73 (1987), 118-130.
  13. J. J. Nieto, Periodic solutions of nonlinear parabolic equations, J. Differential Equations 60 (1985), 90-102.
  14. J. J. Nieto, Nonuniqueness of solutions for semilinear elliptic equations at resonance, Boll. Un. Mat. Ital. (6) 5-A (1986), 205-210.
  15. J. J. Nieto, Decreasing sequences of compact absolute retracts and nonlinear problems, Boll. Un. Mat. Ital. (7) 2-B (1988), 497-507.
  16. T. I. Seidman, Periodic solutions of a nonlinear parabolic equation, J. Differential Equations 19 (1975), 242-257.
Pages:
111-116
Main language of publication
English
Received
1989-02-08
Published
1991
Exact and natural sciences