ArticleOriginal scientific text
Title
Modeling heat distribution with the use of a non-integer order, state space model
Authors 1, 2, 1
Affiliations
- Department of Automatics and Biomedical Engineering, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-079 Kraków, Poland
- Department of Computer Sciences, High Vocational School in Tarnów, al. A Mickiewicza 8, 33-100 Tarnów, Poland
Abstract
A new, state space, non-integer order model for the heat transfer process is presented. The proposed model is based on a Feller semigroup one, the derivative with respect to time is expressed by the non-integer order Caputo operator, and the derivative with respect to length is described by the non-integer order Riesz operator. Elementary properties of the state operator are proven and a formula for the step response of the system is also given. The proposed model is applied to the modeling of temperature distribution in a one dimensional plant. Results of experiments show that the proposed model is more accurate than the analogical integer order model in the sense of the MSE cost function.
Keywords
non-integer order system, heat transfer equation, infinite dimensional system, Feller semigroups
Bibliography
- Almeida, R. and Torres, D.F.M. (2011). Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives, Communications in Nonlinear Science and Numerical Simulation 16(3): 1490–1500.
- Baeumer, B., Kurita, S. and Meerschaert, M. (2005). Inhomogeneous fractional diffusion equations, Fractional Calculus and Applied Analysis 8(4): 371–386.
- Balachandran, K. and Divya, S. (2014). Controllability of nonlinear implicit fractional integrodifferential systems, International Journal of Applied Mathematics and Computer Science 24(4): 713–722, DOI: 10.2478/amcs-2014-0052.
- Balachandran, K. and Kokila, J. (2012). On the controllability of fractional dynamical systems, International Journal of Applied Mathematics and Computer Science 22(3): 523–531, DOI: 10.2478/v10006-012-0039-0.
- Bartecki, K. (2013). A general transfer function representation for a class of hyperbolic distributed parameter systems, International Journal of Applied Mathematics and Computer Science 23(2): 291–307, DOI: 10.2478/amcs-2013-0022.
- Caponetto, R., Dongola, G., Fortuna, L. and Petras, I. (2010). Fractional, order systems: Modeling and control applications, in L.O. Chua (Ed.), World Scientific Series on Nonlinear Science, University of California, Berkeley, CA, pp. 1–178.
- Curtain, R.F. and Zwart, H. (1995). An Introduction to Infinite-Dimensional Linear Systems Theory, Springer-Verlag, New York, NY.
- Das, S. (2010). Functional Fractional Calculus for System Identification and Control, Springer, Berlin.
- Dlugosz, M. and Skruch, P. (2015). The application of fractional-order models for thermal process modelling inside buildings, Journal of Building Physics 1(1): 1–13.
- Dzielinski, A., Sierociuk, D. and Sarwas, G. (2010). Some applications of fractional order calculus, Bulletin of the Polish Academy of Sciences: Technical Sciences 58(4): 583–592.
- Evans, K.P. and Jacob, N. (2007). Feller semigroups obtained by variable order subordination, Revista Matematica Complutense 20(2): 293–307.
- Gal, C. and Warma, M. (2016). Elliptic and parabolic equations with fractional diffusion and dynamic boundary conditions, Evolution Equations and Control Theory 5(1): 61–103.
- Kaczorek, T. (2011). Selected Problems of Fractional Systems Theory, Springer, Berlin.
- Kaczorek, T. (2016). Reduced-order fractional descriptor observers for a class of fractional descriptor continuous-time nonlinear systems, International Journal of Applied Mathematics and Computer Science 26(2): 277–283, DOI: 10.1515/amcs-2016-0019.
- Kaczorek, T. and Rogowski, K. (2014). Fractional Linear Systems and Electrical Circuits, Białystok University of Technology, Białystok.
- Kochubei, A. (2011). Fractional-parabolic systems, arXiv: 1009.4996 [math.ap], (reprint).
- Mitkowski, W. (1991). Stabilization of Dynamic Systems, WNT, Warsaw, (in Polish).
- Mitkowski, W. (2011). Approximation of fractional diffusion-wave equation, Acta Mechanica et Automatica 5(2): 65–68.
- N’Doye, I., Darouach, M., Voos, H. and Zasadzinski, M. (2013). Design of unknown input fractional-order observers for fractional-order systems, International Journal of Applied Mathematics and Computer Science 23(3): 491–500, DOI: 10.2478/amcs-2013-0037.
- Obraczka, A. (2014). Control of Heat Processes with the Use of Non-integer Models, Ph.D. thesis, AGH University of Science and Technology, Kraków.
- Oprzedkiewicz, K. (2003). The interval parabolic system, Archives of Control Sciences 13(4): 415–430.
- Oprzedkiewicz, K. (2004). A controllability problem for a class of uncertain parameters linear dynamic systems, Archives of Control Sciences 14(1): 85–100.
- Oprzedkiewicz, K. (2005). An observability problem for a class of uncertain-parameter linear dynamic systems, International Journal of Applied Mathematics and Computer Science 15(3): 331–338.
- Ostalczyk, P. (2012). Equivalent descriptions of a discrete-time fractional-order linear system and its stability domains, International Journal of Applied Mathematics and Computer Science 22(3): 533–538, DOI: 10.2478/v10006-012-0040-7.
- Pazy, A. (1983). Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York, NY.
- Podlubny, I. (1999). Fractional Differential Equations, Academic Press, San Diego, CA.
- Popescu, E. (2010). On the fractional Cauchy problem associated with a Feller Semigroup, Mathematical Reports 12(2): 181–188.
- Sierociuk, D., Skovranek, T., Macias,M., Podlubny, I., Petras, I., Dzielinski, A. and Ziubinski, P. (2015). Diffusion process modeling by using fractional-order models, Applied Mathematics and Computation 257(1): 2–11.
- Szekeres, B.J. and Izsak, F. (2014). Numerical solution of fractional order diffusion problems with Neumann boundary conditions, preprint, arXiv: 1411.1596, [math.NA], (preprint).
- Yang, Q., Liu, F. and Turner, I. (2010). Numerical methods for fractional partial differential equations with Riesz space fractional derivatives, Applied Mathematical Modelling 34(1): 200–218.
Additional information
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.