ArticleOriginal scientific text

Title

The control of drilling vibrations: A coupled PDE-ODE modeling approach

Authors 1, 2, 1

Affiliations

  1. Faculty of Engineering, Autonomous University of the State of Mexico, Instituto Literario No. 100 Ote., 50130 Toluca, Mexico
  2. Department of Automatic Control, CINVESTAV-IPN, Av. IPN No. 2508, Col. San Pedro Zacatenco, C.P. 07360, México D.F., Mexico

Abstract

The main purpose of this contribution is the control of both torsional and axial vibrations occurring along a rotary oilwell drilling system. The model considered consists of a wave equation coupled to an ordinary differential equation (ODE) through a nonlinear function describing the rock–bit interaction. We propose a systematic method to design feedback controllers guaranteeing ultimate boundedness of the system trajectories and leading consequently to the suppression of harmful dynamics. The proposal of a Lyapunov–Krasovskii functional provides stability conditions stated in terms of the solution of a set of linear and bilinear matrix inequalities (LMIs, BMIs). Numerical simulations illustrate the efficiency of the obtained control laws.

Keywords

drilling vibrations, LMI approach, ultimate boundedness, coupled wave-ODE system

Bibliography

  1. Anabtawiii, M. (2011). Practical stability of nonlinear stochastic hybrid parabolic systems of Itô-type: Vector Lyapunov functions approach, Nonlinear Analysis: Real World Applications 12(1): 1386–1400.
  2. Bailey, J. and Finnie, I. (1960). An analytical study of drillstring vibration, Journal of Engineering for Industry, Transactions of the ASME 82(2): 122–128.
  3. Ben-Tal, A. and Zibulevsky, M. (1997). Penalty/barrier multiplier methods for convex programming problems, SIAM Journal on Optimization 7(2): 347–366.
  4. Boussaada, I., Mounier, H., Niculescu, S. and Cela, A. (2012). Analysis of drilling vibrations: A time delay system approach, 20th Mediterranean Conference on Control and Automation MED, Barcelona, Spain, pp. 610–614.
  5. Canudas-de Wit, C., Rubio, F. and Corchero, M. (2008). D-OSKIL: A new mechanism for controlling stick-slip oscillations in oil well drillstrings, IEEE Transactions on Control Systems Technology 16(6): 1177–1191.
  6. Challamel, N. (2000). Rock destruction effect on the stability of a drilling structure, Journal of Sound and Vibration 233(2): 235–254.
  7. Detournay, E. and Defourny, P. (1992). A phenomenological model for the drilling action of drag bits, International Journal of Rock Mechanics, Mining Science and Geomechanical Abstracts 29(1): 13–23.
  8. Fliess, M., Lévine, J., Martin, P. and Rouchon, P. (1995). Flatness and defect of non-linear systems: Introductory theory and examples, International Journal of Control 61(6): 1327–1361.
  9. Fridman, E. and Dambrine, M. (2010). Control under quantization, saturation and delay: A LMI approach, Automatica 45(10): 2258–2264.
  10. Fridman, E., Dambrine, M. and Yeganefar, N. (2008). Input to state stability of systems with time-delay: A matrix inequalities approach, Automatica 44(9): 2364–2369.
  11. Fridman, E., Mondié, S. and Saldivar, B. (2010). Bounds on the response of a drilling pipe model, IMA Journal of Mathematical Control and Information 27(4): 513–526.
  12. Grujić, L.T. (1973). On practical stability, International Journal of Control 17(4): 881–887.
  13. Halsey, G., Kyllingstad, A. and Kylling, A. (1988). Torque feedback used to cure slip-stick motion, Proceedings of the 63rd Society of Petroleum Engineers Drilling Engineering Annual Technical Conference and Exhibition, Houston, TX, USA, pp. 277–282.
  14. Jansen, J. (1993). Nonlinear Dynamics of Oilwell Drillstrings, Ph.D. thesis, Delft University of Technology, Delft.
  15. Jansen, J. and van den Steen, L. (1995). Active damping of self-excited torsional vibrations in oil well drillstrings, Journal of Sound and Vibration 179(4): 647–668.
  16. Javanmardi, K. and Gaspard, D. (1992). Application of soft torque rotary table in mobile bay, Technical Report IADC/SPE 23913, International Association of Drilling Contractors/Society of Petroleum Engineers, Dallas, TX.
  17. Khalil, H. (2002). Nonlinear Systems, Third Edition, Prentice-Hall, Upper Saddle River, NJ.
  18. Knuppel, T., Woittennek, F., Boussaada, I., Mounier, H. and Niculescu, S. (2014). Flatness-based control for a non-linear spatially distributed model of a drilling system, in A. Seuret et al. (Eds.), Low Complexity Controllers for Time Delay Systems: Advances in Delays and Dynamics, Volume 2, Springer, Cham, pp. 205–218.
  19. Kǒcvara, M. and Stingl, M. (2003). PENNON—a code for nonlinear and convex semidefinite programming, Optimization Methods and Software 8(3): 317–333.
  20. La Salle, J. and Lefschetz, S. (1961). Stability by Lyapunov’s Direct Method: With Applications, Academic Press, New York, NY.
  21. Lakshmikantham, V., Leela, S. and Martynyuk, A. (1990). Practical Stability of Nonlinear Systems, World Scientific Publishing Company, Singapore.
  22. Levinson, N. (1944). Transformation theory of non-linear differential equations of the second order, Annals of Mathematics 45(4): 723–737.
  23. Lu, H., Dumon, J. and de Wit, C.C. (2009). Experimental study of the D-OSKIL mechanism for controlling the stick-slip oscillations in a drilling laboratory testbed, 2009 IEEE Control Applications (CCA) & Intelligent Control (ISIC), St. Petersburg, Russia, pp. 1551–1556.
  24. Ma, R., Dimirovski, G. and Zhao, J. (2013). Backstepping robust H∞ control for a class of uncertain switched nonlinear systems under arbitrary switchings, Asian Journal of Control 15(1): 41–50.
  25. Navarro-López, E. and Cortés, D. (2007a). Avoiding harmful oscillations in a drillstring through dynamical analysis, Journal of Sound and Vibration 307(1): 152–171.
  26. Navarro-López, E. and Cortés, D. (2007b). Sliding-mode control of a multi-DOF oilwell drillstring with stick-slip oscillations, Proceedings of the 2007 American Control Conference, New York, NY, USA, pp. 3837–3842.
  27. Navarro-López, E. and Licéaga-Castro, E. (2009). Non-desired transitions and sliding-mode control of a multi-DOF mechanical system with stick-slip oscillations, Chaos, Solitons and Fractals 41(4): 2035–2044.
  28. Navarro-López, E. and Suárez, R. (2004). Practical approach to modelling and controlling stick-slip oscillations in oilwell drillstrings, Proceedings of the 2004 IEEE International Conference on Control Applications Taipei, Taiwan, pp. 1454–1460.
  29. Pavone, D. and Desplans, J. (1994). Application of high sampling rate downhole measurements for analysis and cure of stick-slip in drilling, Technical Report SPE 28324, Society of Petroleum Engineers, Dallas, TX.
  30. Rasvan, V. (2006). Three lectures on dissipativeness, IEEE International Conference on Automation, Quality and Testing, Robotics, Cluj-Napoca, Romania, pp. 167–177.
  31. Saldivar, B., Knuppel, T., Woittennek, F., Boussaada, I., Mounier, H. and Niculescu, S. (2014). Flatness-based control of torsional-axial coupled drilling vibrations, 19th World Congress of the International Federation of Automatic Control, Cape Town, South Africa, pp. 7324–7329.
  32. Saldivar, B. and Mondié, S. (2013). Drilling vibration reduction via attractive ellipsoid method, Journal of the Franklin Institute 350(3): 485–502.
  33. Saldivar, B., Mondié, S., Loiseau, J. and Rasvan, V. (2013). Suppressing axial torsional coupled vibrations in oilwell drillstrings, Journal of Control Engineering and Applied Informatics 15(1): 3–10.
  34. Serrarens, A., van de Molengraft, M., Kok, J. and van den Steeen, L. (1998). H∞ control for suppressing stick-slip in oil well drillstrings, IEEE Control Systems 18(2): 19–30.
  35. Skaugen, E. (1987). The effects of quasi-random drill bit vibrations upon drillstring dynamic behavior, Technical Report SPE 16660, Society of Petroleum Engineers, Dallas, TX.
  36. Suh, Y., Kang, H. and Ro, Y. (2006). Stability condition of distributed delay systems based on an analytic solution to Lyapunov functional equations, Asian Journal of Control 8(1): 91–96.
  37. Timoshenko, S. and Young, D. (1955). Vibrations Problems in Engineering, Third Edition, D. Van Nostrand Company, Princeton, NJ.
  38. Tucker, R. and Wang, C. (1999). On the effective control of torsional vibrations in drilling systems, Journal of Sound and Vibration 224(1): 101–122.
  39. Weaver, W., Timoshenko, S. and Young, D. (1990). Vibrations Problems in Engineering, Fifth Edition, John Wiley & Sons, New York, NY.
  40. Wu, J., Li, S. and Chai, S. (2010). Exact controllability of wave equations with variable coefficients coupled in parallel, Asian Journal of Control 12(5): 650–655.
  41. Yang, L. and Wang, J. (2014). Stability of a damped hyperbolic Timoshenko system coupled with a heat equation, Asian Journal of Control 16(2): 546–555.
  42. Yoshizawa, T. (1960). Stability and boundedness of systems, Archive for Rational Mechanics and Analysis 6(1): 409–421.
  43. Yoshizawa, T. (1966). Stability Theory by Lyapunov’s Second Method, The Mathematical Society of Japan, Tokyo.
  44. Zhang, X. and Zuazua, E. (2004). Polynomial decay and control of a 1-D hyperbolic-parabolic coupled system, Journal of Differential Equations 204(2): 380–438.
  45. Zhou, Z. and Tang, S. (2012). Boundary stabilization of a coupled wave-ode system with internal anti-damping, International Journal of Control 85(11): 683–693.

Additional information

Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.

Pages:
335-349
Main language of publication
English
Published
2016
Exact and natural sciences