NONLINEAR SYSTEM IDENTIFICATION WITH A REAL–CODED GENETIC ALGORITHM (RCGA)

IMEN CHERIF,∗, FARHAT FNAIECH

Laboratory of Signal, Image and Energy Mastery (SIME)
National Higher Engineering School of Tunis (ENSIT), 5 Av. Taha Hussein, 1008, Tunis, Tunisia
e-mail: imcherif2001@yahoo.fr, fnaiech@ieee.org

This paper is devoted to the blind identification problem of a special class of nonlinear systems, namely, Volterra models, using a real-coded genetic algorithm (RCGA). The model input is assumed to be a stationary Gaussian sequence or an independent identically distributed (i.i.d.) process. The order of the Volterra series is assumed to be known. The fitness function is defined as the difference between the calculated cumulant values and analytical equations in which the kernels and the input variances are considered. Simulation results and a comparative study for the proposed method and some existing techniques are given. They clearly show that the RCGA identification method performs better in terms of precision, time of convergence and simplicity of programming.

Keywords: blind nonlinear identification, Volterra series, higher order cumulants, real-coded genetic algorithm.

1. Introduction

In the real world, many systems exhibit nonlinearities that cannot be ignored such as in nonlinear control systems, equalization of nonlinear communication channels, poly-spectrum modeling and many others (Attar and Dowell, 2005; Tan and Cloe, 2000; Ozertem and Erolagnus, 2009; Kalouptsidis and Konkoulas, 2005; Tsoukas et al., 2001). This is why the popularity of nonlinear signal processing has increased over the last decade.

Modeling with Volterra series proved to be a viable approach for nonlinear physical systems. These series can describe any input-output relationship in a nonlinear domain with reasonable accuracy. Each term of a Volterra series specifies a particular order of nonlinearity of the identified system. For example, in digital communication systems, the communication channels are usually impaired by a nonlinear intersymbol interference (ISI). Channel identification allows us to compensate the ISI effects at the receivers. This nonlinearity is in general modeled by a finite Volterra series.

The great advantage of modeling with Volterra series is essentially related to the following facts:

• The output of the Volterra series is linear from the viewpoint of model kernel parameters.

• The signal nonlinearity can be represented through multidimensional operators existing in the products of the input samples.

Unfortunately, modeling with Volterra series involves excessive computational requirements, even when using a truncated version of the series and after taking into consideration the symmetry of the different order of kernels, too.

Glentis et al. (1999) considered the problem of nonlinear filtering and identification based on finite support Volterra models. They developed efficient algorithms and persistent excitation conditions for this purpose. It is shown that the normal equations (expressed in terms of cumulants) for a finite support Volterra system excited by a zero mean Gaussian input have a unique solution if, and only if, the power spectral process of the input signal is nonzero at least at \(m \) distinct frequencies (where \(m \) is the memory of the system) (Stoica and Soderstrom, 1982).

Tsouka et al. (2001) considered the problem of direct identification of a discrete bilinear system governed by an i.i.d. input, with additive noise at the output. It was shown that the bilinear model parameters can be determined via linear equations using cross-cumulants.
between the output and the input up to the third order. The proposed identification scheme avoids some well-known problems associated with nonlinear least squares algorithms and especially the normal matrix inversion.

Koukoulas and Kalouptsidis (1997; 2000) employed cumulants and poly-spectra to compute the symmetric Volterra kernels, and presented closed-form solutions in the case of a stationary, Gaussian, zero mean random process or an i.i.d. one.

However, in many real applications, the above described methods are not easily applicable for many reasons, and especially for the large number of parameters to be determined and the high computational complexity. In the last years, some intelligent approaches have been adopted to overcome some of the underlined problems, such as neural networks (for their parallelism and learning capacity), fuzzy logic and genetic algorithms.

Koukoulas and Kalouptsidis (2005) proposed blind identification approach of quadratic nonlinear models using neural networks with higher order cumulants. This approach used a weight-decoupled extended Kalman filter training algorithm to estimate the model parameters. Although the proposed identification method yields acceptable kernel estimates, its computational complexity is relatively high and the algorithm becomes intractable in the case of a large number of estimates.

Stathaki and Scohyers (1997) used an unconstrained Lagrange programming neural network to identify the Volterra kernels. This method needs a large number of iterations to converge.

Recently, genetic algorithms (GAs) have been proposed to solve many nonlinear optimization problems and to address the issue of the complexity associated with Volterra models (Cherif et al., 2007; Vasconcelos et al., 2001; Herrera et al., 1998). They are known as powerful optimization tools. A genetic algorithm is a quasi-stochastic search process based on the law of natural selection and genetics. It is important to pinpoint here their major features, especially

- robustness and ability to escape from local minimum points;
- no need for any complex computation as in the conventional optimisation methods, such as the computation of the gradient vectors, the normal matrix inverse, the Fourier transform and its inverse, etc.

For using genetic algorithms for a nonlinear identification problem, in this work we shall propose a new RCGA method for blind identification of quadratic Volterra systems. This method profits from the multiple features of the GA and uses it to solve a set of nonlinear equations where the unknown parameters are the kernels of a discrete time Volterra series with finite memory. These equations are performed by considering the output cumulant up to the third order. The major advantage of the proposed identification method is that it can be applied successfully to a great number of unknown parameters, and without any excessive computational complexity.

In order to make a comprehensive comparison study by inspecting other methods in the literature (Glentis et al., 1999; Koukoulas and Kalouptsidis, 2000), it is quite difficult to find works dealing with the same examples and the same experimental conditions such as the input sequences, the same benchmark parameters, the same computing conditions (e.g., computer speed, memory size, etc.). Consequently, the comparison will be limited to two methods presented by Tan and Clow (2000) as well as Stathaki and Scohyers (1997).

The paper is structured as follows. Section 2 defines the problem of blind system identification with a real-coded genetic algorithm. Section 3 presents a statistical study of the system output and discusses the identifiability of the Volterra model with the output cumulants up to the third order. Section 4 presents the new approach to identify the unknown quadratic kernels with the RCGA. A comparison with some existing methods is given in Section 5. Finally, in Section 6, computer simulations and comparison are carried out resulting in good solutions of the proposed nonlinear identification genetic method in terms of precision, convergence speed and computation simplicity.

2. RCGA blind identification problem formulation

Let us denote the output of a discrete nonlinear time-invariant quadratic system driven by an input random sequence. A quadratic Volterra representation of the input output relationship can be expressed as

$$y(n) = \sum_{i=0}^{N} \sum_{j=0}^{N} h_2(i,j) x(n-j) + e(n).$$

The noise signal is assumed to be a white Gaussian sequence, zero mean, and independent of the input. Furthermore, it is assumed that the unknown quadratic kernels are causal, absolutely summable and symmetric, that is, \(h_2(i,j) = h_2(j,i)\).

Also, \(N\) is assumed to be known beforehand; this prevents the user from launching a structure identification procedure based on the Fisher test, the Akaike test, etc. The problem of blind identification may be formulated as follows: Based only on the knowledge of the output measurement and the input statistics, the unknown system kernels \(h_2(i,j)\) are estimated using a real-coded genetic algorithm. The fitness function of the RCGA is defined as the difference between calculated cumulant values and
analytical equations in which the kernels and the input variances are considered. These analytical functions depend strongly on the character of the input sequence (a Gaussian sequence or an i.i.d. one). In the next section, we shall study both the cases.

3. Statistical analysis

Recall the definition of the cumulants of a random variable given by Kalouptsidis and Koukoulos (2005). The p-th order cumulant sequence of a stationary random signal is denoted by

$$c_{p,y}(k_1, \ldots, k_{p-1}) = \text{cum} \{y(n), \ldots, y(n + k_{p-1})\}. \quad (2)$$

The function $c_{p,y}$ is symmetric and completely determined in the space \mathbb{Z}^{p-1} by its values in the domain Δ defined as

$$\Delta = \{(k_1, \ldots, k_p) \in \mathbb{Z}^{p-1}; 0 \leq k_{p-1} \leq k_i\}. \quad (3)$$

For every $l \in \mathbb{N}$, we define

$$\Delta_l = \{(k_1, k_2, \ldots, k_{p-1}) \in \Delta; k_i > l\}. \quad (4)$$

To determine the parameters of the quadratic Volterra system, we will generate sufficient output cumulant information up to the third order. The first order cumulant is defined by $c_{1,y} = E(y(n))$, where $E(\cdot)$ stands for the expectation operator.

Taking into account that the noise $e(n)$ signal is a white Gaussian sequence, zero mean, and independent of the input, the first order cumulant can be written as

$$c_{1,y} = \sum_i \sum_j h_2(i, j) E(x(n - i) x(n - j)). \quad (5)$$

The second order cumulant is given by

$$c_{2,y}(m) = \text{cum} \{y(n), y(n + m)\}. \quad (6)$$

In view of the Volterra model (1), $c_{2,y}(m)$ can be expressed as

$$c_{2,y}(m) = \sum_{i,j} h_2(i, j) \sum h_2(i, j) x(n - i) x(n - j), y(n + m) \} \quad (7)$$

The first and second order cumulants of $y(n)$ given by (5) and (7) are not sufficient to solve the identification problem because the number of the unknown parameters in these equations is greater than that of useful samples of $c_{2,y}(m)$.

For this reason, we derive the third order cumulant of the output $y(n)$ which is given by

$$c_{3,y}(m, k) = \text{cum} \{y(n), y(n + m), y(n + k)\}. \quad (8)$$

The development of these equations changes depending on the distribution type of the excitation signal. In the following, we shall derive useful expressions for (5), (7) and (8) for the following cases of the input sequence:

- $x(n)$: stationary zero mean white Gaussian process,
- $x(n)$: stationary independent identically distributed (i.i.d) process.

3.1. Case of stationary Gaussian input excitation.

Let us assume that $x(n)$ is an unknown zero mean white Gaussian signal with variance $\gamma_{2x} = E\{x^2(n)\} \neq 0$.

For simplicity, we assume that the output is zero mean, which leads to $\sum h_2(i, j) = 0$. Consequently,

$$c_{1,y} = 0. \quad (9)$$

Under the same assumptions, the second order cumulant will be written as

$$c_{2,x}(n) = \gamma_{2x} \delta(n) = \begin{cases} \gamma_{2,x} & \text{if } n = 0, \\ 0 & \text{otherwise}, \end{cases} \quad (10)$$

and

$$c_{k,x}(n_1, n_2, \ldots, n_{k-1}) = 0 \quad \text{for all } k > 2.$$

In this paper, if the output is not zero mean, then we make it so by subtracting its mean from all samples prior to any further processing.

From (7) and (10), we get

$$c_{2,y}(m) = \sum_i \sum_j h_2(i, j) h_2(i + m, j + m)$$

$$\times \text{cum} \{x(n - i)x(n - j), x(n - i)x(n - j)\}$$

$$= 2\gamma_{2x}^2 \sum_i \sum_j h_2(i, j) h_2(i + m, j + m).$$

It is known that the average of the product of an odd number of zero mean jointly Gaussian random variables is identically zero irrespective of their mutual correlation. Moreover, the average of the product of an even number of zero mean jointly Gaussian random variables is equal to the sum over all distinct ways of partitioning the random variables into products of averages of pairs (Vasconcelos
where the function ϕ output will be given by

$$
 E \{x_1, x_2, x_3, x_4, x_5\} = 0, \quad (11)
$$

$$
 E \{x_1, x_2 x_3, x_4 x_5, x_6\} = E \{x_1 x_2\} E \{x_3 x_4 x_5 x_6\} + E \{x_1 x_3\} E \{x_2 x_4 x_5 x_6\} + E \{x_1 x_4\} E \{x_2 x_3 x_5 x_6\} + E \{x_1 x_5\} E \{x_2 x_3 x_4 x_6\} + E \{x_1 x_6\} E \{x_2 x_3 x_4 x_5\}. \quad (12)
$$

Based on the fact that $y(n)$ is a zero mean random process, it follows that the third order cumulants is identical with the third order moment. Accordingly, from (8) and (13) we get

$$
 c_{1,y}(m, k) = E \{(y(n)y(n + m)y(n + k)\}, \quad (13)
$$

$$
 c_{3,y}(m, k) = 8 \gamma_3 \phi_2(k, k - m, m), \quad (14)
$$

where the function $\phi_2(\cdot)$ is defined by

$$
 \phi_2(k, p, q) = \sum_i \sum_j \sum_k h_2(i, j) h_2(i + k, k + p) h_2(j + q, k). \quad (15)
$$

Equations (11) and (15) provide a sufficient number of equations with respect to the unknown kernels number, forming a system of nonlinear equations. Before presenting the genetic approach to solve these systems of equations, let us discuss the case of stationary i.i.d. excitation.

3.2. Case of a stationary independent identical distributed input (i.i.d. excitation)

In this section, we assume that $x(n)$ is a zero mean i.i.d signal satisfying

$$
 \gamma_4 = E\{x^4(n)\} \neq 0,
$$

$$
 \gamma_3 = E\{x^3(n)\} \neq 0,
$$

$$
 \gamma_2 = E\{x^2(n)\} \neq 0.
$$

Using the properties of cumulants (Kalouptsidis and Koukoulas, 2005), if a sequence is an i.i.d. zero mean random process, then

$$
 c_{p,x}(k_1, \ldots, k_{p-1}) = \gamma_2 \delta(k_1, \ldots, k_{p-1}) \quad (15)
$$

$$
 = \begin{cases}
 \gamma_2, & \text{if } k_1 = \cdots = k_{p-1} = 0, \\
 0, & \text{otherwise.}
\end{cases}
$$

From this equation and (5), the first order cumulant of the output will be given by

$$
 c_{1,y} = \gamma_2 \sum_{i=0}^{N} h_2(i, i). \quad (16)
$$

In view of the Volterra model (1), $c_{2,y}(m)$ can be written as

$$
 c_{2,y}(m) = \sum_i \sum_{j, k, l} h_2(i, j) h_2(i + m, i + m)
$$

$$
 + 4 \gamma_2 x^2 \sum_{j, k, l, m} h_2(i + j + k) h_2(i + j + m, i + m), \quad (17)
$$

where $\gamma_2 x^2 = \gamma_4 + 2 \gamma_2 x^2$.

Finally, the third order cumulant of $y(n)$ given by (8) will be expressed by

$$
 c_{3,y}(m, k) = \gamma_6 \phi_0(m, k) + \gamma_4 \gamma_2 \phi_1(m, k) + \gamma_2^3 \phi_3(m, k), \quad (18)
$$

where the functions $\phi_i(\cdot)$ are defined by

$$
 \phi_0(m, k) = \sum_i h_2(i + m, i + m) h_2(i + k, i + k) h_2(i, i),
$$

$$
 \phi_1(m, k) = w_1(m, k) + w_1(m - k, -k) + w_1(k - m, -m)
$$

with

$$
 w_1(m, k) = 4 \sum_{j, k, l} h_2(i + j + m, i + m)
$$

$$
 \times h_2(i + j + k, i + k) h_2(i, j), \quad (19)
$$

$$
 \phi_2(m, k) = \psi_2(m, k) + \psi_2(m - k, -k) + \psi_2(k - m, -m),
$$

$$
 \psi_2(m, k) = 4 \sum_{j, k, l} h_2(i + j + m, i + m)
$$

$$
 \times h_2(i + j + k, i + k) h_2(i + j, i), \quad (20)
$$

and

$$
 w_2(m, k) = 2 \sum_{j, k, l} h_2(j + m, j + m)
$$

$$
 \times h_2(i + k, i + k) h_2(i, j), \quad (21)
$$

$$
 \phi_3(m, k) = 8 \sum_{i, j, k} h_2(i, j)
$$

$$
 \times h_2(m + j, m + l) h_2(k + l, k + i). \quad (22)
$$

Since the Volterra kernels have a finite range of the order N, the third order cumulant has only one
nonvanishing term in Δ_N; this term is given by
\begin{equation}
\gamma_{3,y}(m,k) = \gamma_{3,x}^{2} w_2(m-k,-k) \\
= 2\gamma_{3,x}^{2} \sum_{i,j} h_2(m-k+j,m-k+j) \\
\times h_2(i-k,i-k) h_2(i,j).
\end{equation}

Equations (17)–(19) provide a sufficient number of equations forming a system of multi-nonlinear equations with multi-unknowns which are Volterra kernels. In the following, we shall present a new approach to blind identification with a genetic algorithm.

4. Blind identification with a real-coded genetic algorithm

Genetic algorithms are inspired by the natural search and selection processes leading to the survival of the best individuals. The elements of the search space can be coded using two possibilities: binary coding (yielding a binary coded genetic algorithm, BCGA) or real coding, which would seem natural when dealing with optimization problems with variables in continuous domains (yielding a real-coded genetic algorithm). The basic steps of a general genetic algorithm are depicted in the flowchart of Fig. 1.

In order to apply the genetic techniques to estimate the unknown kernels set and the r-th moment of $x(n)$ denoted by $E[x^{r}(n)] = \gamma_{r,x}$, we used the RCGA. Consequently, we defined a chromosome as a real vector formed by the entire number of the kernels $h_2(i,j)$ and $\gamma_{r,x}$ with $r = 2$ for the Gaussian case (respectively for the i.i.d case). Thus, in the case of Gaussian excitation, the general j-th chromosome in a generation (population) will be expressed by the vector
\begin{equation}
\text{Gch}_j = [h_2(0,0) \ldots h_2(N-1,N) \gamma_{2,x}] \text{.}
\end{equation}

In the case of i.i.d. input, the general j-th chromosome is then given by
\begin{equation}
\text{Ich}_j = [h_2(0,0) \ h_2(0,1) \ldots h_2(N,N) \\
\gamma_{2,x} \ \gamma_{3,x} \ \gamma_{4,x}] \text{.}
\end{equation}

From these representations, each kernel or moment is viewed as a gene and is assumed to be real valued. In the following, we develop each step of the RCGA for the proposed application.

4.1. Fitness and cost functions. The fitness function is required to be non-negative. In this work, we defined the fitness function by
\begin{equation}
F_j = \frac{1}{1 + I_j},
\end{equation}
where I_j is the cost function to be minimized. It is defined by
\begin{equation}
I_j = (\hat{c}_{1,y} - c_{1,y})^2 + \sum_{m} (\hat{c}_{2,y}(m) - c_{2,y}(m))^2 \\
+ \sum_{m} \sum_{k} (\hat{c}_{3,y}(m,k) - c_{3,y}(m,k))^2.
\end{equation}

The subscript j stands for the number of chromosomes in the current population, while $c_{1,y}$, $c_{2,y}(m)$ and $c_{3,y}(m,k)$ are the values of the first, second and third order cumulants, respectively. These cumulants are computed directly using Eqns. (9), (11) and (15) for the Gaussian case (or Eqns. (17), (18), and (20) for the i.i.d case) and with the different values of the kernels given by each chromosomes Gch_i (or Ich_i) in the current iteration. As cumulants involve expectation operations, they cannot be computed in an exact manner from the available real output signals. The computation of cumulants can be approximated (estimated) consistently by replacing expectations by sample averages
\begin{equation}
\hat{c}_{1,y} = \frac{1}{N} \sum_{n} y(n),
\end{equation}
\begin{equation}
\hat{c}_{2,y} = \frac{1}{N} \sum_{n} y(n)y(n+m),
\end{equation}
\begin{equation}
\hat{c}_{3,y}(m,k) = \frac{1}{N} \sum_{n} y(n)y(n+m)y(n+k).
\end{equation}

Once the fitness function is defined and the population set is initialized, one should apply the different operators of the genetic algorithm.

4.2. Selection operator. The selection operator is the basic operator to form the mating set from the old one. The roulette wheel is one of the most often used stochastic selection techniques (Herrera,1998). Its evaluation is given by the following steps:

\begin{itemize}
\item Choose a chromosome (representing an individual) randomly from the population.
\item Compute the fitness of this chromosome.
\item Calculate the fitness of the current chromosome divided by the total fitness of the population. This value is called the normalized fitness.
\item Generate a random number between 0 and 1.
\item If the random number is less than the normalized fitness, select the chromosome.
\end{itemize}
4.4. Mutation operator. The mutation operator that consists in replacing the gene several runs. In this work, we used the random mutation the mutation probability is selected experimentally after simple stochastic search algorithm. In our simulations, certain mutation probability. This probability cannot be

Algorithm 1. Different steps of blind nonlinear system identification with the RCGA.

Step 1. Input data and fix input data and fix parameters kernel.

Step 2. Select a quadratic Volterra kernel.

Step 3. Construct a chromosome as indicated by Eqns. (21) (Gaussian case) or (22) (i.i.d. case).

Step 4. Compute the output system cumulants which are approximated by Eqns. (25)–(27).

Step 5. Form a first population by generating different chromosomes randomly.

Step 6. For each chromosome compute values of different cumulants using Eqns. (9), (10), (15) (Gaussian case) or (17), (18), (19) (i.i.d. case).

Step 7. For each chromosome. Apply the different operators of the genetic algorithm for generating a new population, and go back to Step 3.

5. Comparison with the existing methods

The proposed identification method has been compared with the methods proposed by Tan and Clow (2000) as well as Stathaki and Scotyos (1997).

Tan and Clow (2000) solve the problem of blind identification using only the third order output cumulant values with a feed-forward neural network. In most feed-forward neural network applications, weight connexions are trained in such a way that the network establishes a relationship between the system inputs and outputs, but in their work, the functional approximation characteristics of a neural network were applied to identify the parameters of the nonlinear system. In other words, for a general nonlinear system modeled by its output signal \(y(t) = f(\phi(t-1), h) \), where \(h \) stands for the system parameters and \(\phi(t-1) \) denotes measurable signals up to time \(t-1 \), there exists a neural network NN so that the relation between the parameter estimates and the input and output can be given by \(h(t) = NN (\phi(t-1), y(t)) \). Consequently, for a given \(\phi(t-1) \) and \(y(t) \), the neural network can be trained such that its output converges to the desired parameters. Then, given \(c_{3,y}(m, k) \), the authors constructed a neural network (h-NN) so that their outputs converge to the exact kernel values. For more details, see the works of Tan and Clow (2000) as well as Annaswamy and Yu (1996).

Stathaki (1997) tried to determine the different Volterra kernels and the variance of the input from the autocorrelation estimates \(\rho [k] \) and the third order moment estimates \(\mu [k, l] \) of the system output. For this purpose, they used a Lagrange programming neural network (LPNN) to solve a system of nonlinear equations with multiple unknowns. As the LPNN is essentially designed for general nonlinear programming, the author...
formulated the identification problem as follows:

\[
\begin{align*}
\text{minimize } & L(f) = \sum_{i,j} (\mu_{i,j} - M_{i,j,f})^2 \\
\text{subject to } & \rho_{i} = R_{i,j},
\end{align*}
\]

where \(R_{i,j}\) is the autocorrelation function of the real process \(y[n]\) and \(M_{i,j}\) is its third order moment sequence, \(f\) is the vector formed by the unknown parameters of the Volterra model and the unknown variance of the driving noise. Thus the Lagrangian function will be written as

\[
L(f, \lambda) = L(f) + \sum_{i} \lambda_{i} (\rho_{i} - R_{i,f}).
\]

To improve the convergence and the precision of the algorithm, we extended the preceding function by defining the augmented Lagrangian function such as

\[
L(f, \lambda) = L(f) + \sum_{i} \lambda_{i} (\rho_{i} - R_{i,f}) + \alpha \sum_{i} (\rho_{i} - R_{i,f})^2,
\]

where \(\alpha\) is a penalty parameter. Thus, the backpropagation algorithm can be established using the Lagrange multiplier.

These two methods overcome the difficulty of programming related to the dimensions of the model, but they introduce other problems, especially the multiple tuning parameters of neural networks, a large number of iterations needed for convergence, and multiple tests to search for good initialization parameters, which make the Monte-Carlo procedure heavier.

The proposed genetic method is characterized by the simplicity of programming, a reduced number of initial parameters to choose at the beginning of simulations, and a high speed of convergence.

6. Simulation results

In these experiments, two quadratic models are used to validate our proposed methodology. The probability of crossover and mutation is chosen experimentally after several tests. Note that the RCGA uses random chromosomes initialisation in the range \([-5, +5]\). To avoid a dependence on realizations, estimates were averaged over 100 Monte-Carlo runs.

The noise signal \(e(n)\) is assumed to be a white Gaussian sequence and independent of the input. The parameter estimation was performed for two different signal to noise ratio (SNR) levels: 20 dB and 3 dB. In each run, 128000 samples for \(e(n)\) are generated. The SNR is computed using the following expression:

\[
\text{SNR} = \frac{E[(y(n) - e(n))^2]}{E(e^2(n))}. \quad (27)
\]

For each simulation, we summarize results in different tables giving the mean of each estimate along the 100 Monte-Carlo runs and the corresponding standard deviation.

6.1. Model 1. The first model to be tested here is given by the following quadratic model:

\[
y(n) = 0.4x(n)x(n - 1) + 0.2x(n)x(n - 2) - 0.5x(n - 2)x(n - 1) + e(n), \quad (28)
\]

In each simulation the output signal is set to zero mean by subtracting its mean from all samples prior to any further processing.

- First a Gaussian random sequence \(x(n)\) with zero mean is generated and serves as the input signal. Figure 2 shows an example of the evolution of the best parameters (i.e., a chromosome of the population having the best fitness values) with respect to the number of iterations for one run and for SNR = 3 dB.

- Second, an i.i.d. signal with an exponential distribution input with zero mean is generated to construct the system output. Figure 3 shows an example of the evolution of the best parameters with respect to the iterations number for one run and for SNR = 3 dB.

Comparison results (the means and the standard deviations) of the new algorithm with respect to the h-NN and LPNN algorithms are summarized in Tables 2–5 for different SNR levels and for 100 Monte-Carlo runs. Table 6 includes a comparison of the convergence times needed for each algorithm for 100 Monte-Carlo runs.

![Figure 2](image1.png)

![Figure 3](image2.png)

Fig. 2. Evolution of the estimates with respect to the number of iterations for one run (Model 1, Gaussian excitation, SNR = 3 dB).
Note that for simulations we used an Intel®Core(TM) i3 CPU with 2.4 GHz using Matlab. Moreover, one must note that these results may slightly vary according to the initialisation procedures, programming methodologies, etc.

6.2. Model 2. The output sequence is generated using the model given by
\[
y(n) = 0.21x^2(n) - 1.62x^2(n - 1) + 1.41x^2(n - 2) \\
+ 3.72x(n)x(n - 1) + 1.86x(n)x(n - 2) \\
+ 0.76x(n - 1)x(n - 2) + e(n).
\] (29)

The same experiments as for Model 1 are pursued in this case. In the same manner, Figs. 4 and 5 show two examples of the evolution of the best parameters with respect to the iterations number for both cases, Gaussian and i.i.d. excitation signals, respectively.

Different results for different SNR levels and for 100 Monte-Carlo runs are summarized in Tables 7–10. Table 11 gives a comparison of the convergence time needed for each algorithm for 100 Monte-Carlo runs.

6.3. Analysis of results. From Figs. 2–5 we note that despite the oscillation presented in the beginning of the simulation the RCGA usually converges to the desired parameters. These oscillations are interpreted by the stochastic aspect of the algorithm in the first research stage before finding a good set of optimal parameters.

From Tables 2–5 and 7–10, one can observe that the RCGA based on the cumulants of the output up to the third order provides good estimated Volterra kernels for both the types of the excitation input and for different levels of the SNR. The standard deviations for the new algorithm are in general less than those given by the h-NN and the LPNN algorithms, which leads to a good precision.

It is noted also that the algorithm is relatively faster than the others and does not need a large number of iterations to converge. Indeed, the number of iterations needed for convergence in all simulations did not exceed 300. Tables 6 and 11 show that the reductions in the computation time vary between 14% and 30% with respect to the time needed by the other algorithms.

The study of the consistency of the estimates is a subject for further work.

7. Conclusions
In this work, an evolutionary method based on a genetic algorithm was proposed and successfully used for blind Volterra system identification. This method does not require any excessive computations or mathematical transformations. The overall performance of the algorithm (precision, speed of convergence, computational complexity) is very satisfactory in comparison with several other algorithms.

Extending the proposed algorithm to higher order Volterra series and general nonlinear polynomial systems remains an open problem. Moreover, performances of the presented method can be compared with respect to the binary coded genetic algorithm (BCGA).

Table 2. Comparison of the convergence time (second) for 100 Monte-Carlo runs and Model 2.

<table>
<thead>
<tr>
<th></th>
<th>Gaussian input (7 parameters)</th>
<th>i.i.d. input(9 parameters)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCGA</td>
<td>5786</td>
<td>7260</td>
</tr>
<tr>
<td>h-NN</td>
<td>7152</td>
<td>8356</td>
</tr>
<tr>
<td>LPNN</td>
<td>6990</td>
<td>8422</td>
</tr>
</tbody>
</table>

Table 1. Comparison of the convergence time (second) for 100 Monte-Carlo runs and Model 1.

<table>
<thead>
<tr>
<th></th>
<th>Gaussian input (4 parameters)</th>
<th>i.i.d. input (6 parameters)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCGA</td>
<td>3820</td>
<td>5543</td>
</tr>
<tr>
<td>h-NN</td>
<td>5378</td>
<td>6428</td>
</tr>
<tr>
<td>LPNN</td>
<td>5424</td>
<td>6387</td>
</tr>
</tbody>
</table>

References

Nonlinear system identification with a real-coded genetic algorithm (RCGA)

Fig. 4. Evolution of the estimates with respect to the iteration number for one run (Model 2, Gaussian excitation, SNR = 3 dB).

Fig. 5. Evolution of the estimates with respect to the iteration number for one run (Model 2, i.i.d. excitation, SNR = 3 dB).

Table 3. Model 1: comparison of the identified Volterra parameters with respect to the real ones (under Gaussian excitation). SNR = 3 dB, probability of crossover = 0.08, probability of mutation = 0.01.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Real values</th>
<th>New algorithm</th>
<th>h-NN</th>
<th>LPNN</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h_1(0,1)$</td>
<td>0.4</td>
<td>0.3156</td>
<td>0.1323</td>
<td>0.4282</td>
</tr>
<tr>
<td>$h_2(0,2)$</td>
<td>0.2</td>
<td>0.1834</td>
<td>0.0576</td>
<td>0.1795</td>
</tr>
<tr>
<td>$h_3(1,2)$</td>
<td>-0.5</td>
<td>-0.4823</td>
<td>0.1287</td>
<td>-0.4879</td>
</tr>
<tr>
<td>$\gamma_{2,2}$</td>
<td>0.84</td>
<td>0.834</td>
<td>0.0478</td>
<td>0.871</td>
</tr>
</tbody>
</table>

Table 4. Model 1: comparison of the identified Volterra parameters with respect to the real ones (under Gaussian excitation). SNR = 20 dB, probability of crossover = 0.08, probability of mutation = 0.01.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Real values</th>
<th>New algorithm</th>
<th>h-NN</th>
<th>LPNN</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h_1(0,1)$</td>
<td>0.4</td>
<td>0.4557</td>
<td>0.0429</td>
<td>0.4176</td>
</tr>
<tr>
<td>$h_2(0,2)$</td>
<td>0.2</td>
<td>0.1987</td>
<td>0.0456</td>
<td>0.1883</td>
</tr>
<tr>
<td>$h_3(1,2)$</td>
<td>-0.5</td>
<td>-0.5228</td>
<td>0.1136</td>
<td>-0.5322</td>
</tr>
<tr>
<td>$\gamma_{2,2}$</td>
<td>0.84</td>
<td>0.880</td>
<td>0.0493</td>
<td>0.758</td>
</tr>
</tbody>
</table>

Table 5. Model 1: comparison of the identified Volterra parameters with respect to the real ones (under i.i.d. excitation). SNR = 3 dB, probability of crossover = 0.07, probability of mutation = 0.02.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Real values</th>
<th>New algorithm</th>
<th>h-NN</th>
<th>LPNN</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h_1(0,1)$</td>
<td>0.4</td>
<td>0.4525</td>
<td>0.1576</td>
<td>0.3367</td>
</tr>
<tr>
<td>$h_2(0,2)$</td>
<td>0.2</td>
<td>0.2343</td>
<td>0.0449</td>
<td>0.1821</td>
</tr>
<tr>
<td>$h_3(1,2)$</td>
<td>-0.5</td>
<td>-0.4664</td>
<td>0.0451</td>
<td>-0.5551</td>
</tr>
<tr>
<td>$\gamma_{2,3}$</td>
<td>1.00</td>
<td>0.9977</td>
<td>0.0287</td>
<td>1.1046</td>
</tr>
<tr>
<td>$\gamma_{4,4}$</td>
<td>1.99</td>
<td>2.0551</td>
<td>0.1099</td>
<td>1.8488</td>
</tr>
<tr>
<td>$\gamma_{4,6}$</td>
<td>8.91</td>
<td>9.1644</td>
<td>0.2876</td>
<td>9.0907</td>
</tr>
</tbody>
</table>

Table 6. Model 1: comparison of the identified Volterra parameters with respect to the real ones (under i.i.d. excitation). SNR = 20 dB, probability of crossover = 0.07, probability of mutation = 0.02.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Real values</th>
<th>New algorithm</th>
<th>h-NN</th>
<th>LPNN</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h_1(0,1)$</td>
<td>0.4</td>
<td>0.4110</td>
<td>0.0121</td>
<td>0.3958</td>
</tr>
<tr>
<td>$h_2(0,2)$</td>
<td>0.2</td>
<td>0.2248</td>
<td>0.0265</td>
<td>0.1954</td>
</tr>
<tr>
<td>$h_3(1,2)$</td>
<td>-0.5</td>
<td>-0.5147</td>
<td>0.0133</td>
<td>-0.4976</td>
</tr>
<tr>
<td>$\gamma_{2,2}$</td>
<td>1.00</td>
<td>0.9962</td>
<td>0.0114</td>
<td>1.0225</td>
</tr>
<tr>
<td>$\gamma_{3,3}$</td>
<td>1.99</td>
<td>2.0174</td>
<td>0.0775</td>
<td>1.9956</td>
</tr>
<tr>
<td>$\gamma_{4,4}$</td>
<td>8.91</td>
<td>9.0299</td>
<td>0.1648</td>
<td>8.9335</td>
</tr>
</tbody>
</table>

Table 7. Model 1: comparison of the identified Volterra parameters with respect to the real ones (under i.i.d. excitation). SNR = 20 dB, probability of crossover = 0.07, probability of mutation = 0.02.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>New algorithm</th>
<th>h-NN</th>
<th>LPNN</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h_0(1,0)$</td>
<td>-1.41</td>
<td>1.4627</td>
<td>0.2623</td>
</tr>
<tr>
<td>$h_0(1,1)$</td>
<td>1.86</td>
<td>1.9382</td>
<td>0.0682</td>
</tr>
<tr>
<td>$h_0(1,2)$</td>
<td>0.76</td>
<td>0.8145</td>
<td>0.1969</td>
</tr>
<tr>
<td>$h_0(2,2)$</td>
<td>1.41</td>
<td>1.4627</td>
<td>0.2623</td>
</tr>
<tr>
<td>$h_0(2,0)$</td>
<td>1.41</td>
<td>1.4627</td>
<td>0.2623</td>
</tr>
<tr>
<td>$h_0(1,0)$</td>
<td>-1.62</td>
<td>-1.6441</td>
<td>0.0251</td>
</tr>
<tr>
<td>$h_0(1,1)$</td>
<td>1.41</td>
<td>1.3955</td>
<td>0.1827</td>
</tr>
<tr>
<td>$h_0(1,2)$</td>
<td>3.72</td>
<td>3.7732</td>
<td>0.2491</td>
</tr>
<tr>
<td>$h_0(2,0)$</td>
<td>0.76</td>
<td>0.7088</td>
<td>0.0971</td>
</tr>
</tbody>
</table>

Table 8. Model 2: comparison of the identified Volterra parameters with respect to the real ones (under Gaussian excitation). SNR = 20 dB, probability of crossover = 0.095, probability of mutation = 0.02.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>New algorithm</th>
<th>h-NN</th>
<th>LPNN</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h_0(1,0)$</td>
<td>-1.41</td>
<td>1.4627</td>
<td>0.2623</td>
</tr>
<tr>
<td>$h_0(1,1)$</td>
<td>1.86</td>
<td>1.9382</td>
<td>0.0682</td>
</tr>
<tr>
<td>$h_0(1,2)$</td>
<td>0.76</td>
<td>0.8145</td>
<td>0.1969</td>
</tr>
<tr>
<td>$h_0(2,2)$</td>
<td>1.41</td>
<td>1.4627</td>
<td>0.2623</td>
</tr>
<tr>
<td>$h_0(2,0)$</td>
<td>1.41</td>
<td>1.4627</td>
<td>0.2623</td>
</tr>
<tr>
<td>$h_0(1,0)$</td>
<td>-1.62</td>
<td>-1.6441</td>
<td>0.0251</td>
</tr>
<tr>
<td>$h_0(1,1)$</td>
<td>1.41</td>
<td>1.3955</td>
<td>0.1827</td>
</tr>
<tr>
<td>$h_0(1,2)$</td>
<td>3.72</td>
<td>3.7732</td>
<td>0.2491</td>
</tr>
<tr>
<td>$h_0(2,0)$</td>
<td>0.76</td>
<td>0.7088</td>
<td>0.0971</td>
</tr>
</tbody>
</table>

Imen Cherif received the B.Sc. degree in mathematics from the University of Sciences of Tunis in 1999, and the D.E.A. degree in electrical engineering from the High School of Science and Engineering of Tunis (ESSTT Tunisia) in 2002. She is currently preparing her Ph.D. in nonlinear system identification and is an assistant professor in the University of Elmanar, Tunisia. Her research interests are focused on nonlinear system identification with evolutionary methods such as genetic algorithms and fuzzy logic.

Farhat Fnaiech received the B.Sc. degree in mechanical engineering in 1978 from the High School of Sciences and Techniques of Tunis, and the Master’s degree in 1980. He obtained the Ph.D. degree in electrical engineering from the same school in 1983, and the Doctorate Es Science in physics from the Faculty of Sciences of Tunis in 1999. He is currently a professor at the High School of Science and Engineering of Tunis. He is a senior member of the IEEE and has published over 150 research papers in many journals and international conferences. He has been a general chairman and a member of the international board committee of many international conferences. He is an associate editor of *IEEE Transactions on Industrial Electronics*. He has served as an IEEE chapter committee coordination sub-committee delegate of Africa Region 8. His main research areas are nonlinear adaptive signal processing, nonlinear control of power electronic devices, digital signal processing, image processing, intelligent techniques and control.
Table 9. Model 2: comparison of the identified Volterra parameters with respect to the real ones (under i.i.d. excitation). SNR = 3 dB, probability of crossover = 0.09, probability of mutation = 0.02.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Real values</th>
<th>New algorithm</th>
<th>h-NN</th>
<th>LPNN</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h_2(0,0)$</td>
<td>0.21</td>
<td>0.2005</td>
<td>0.1433</td>
<td>0.2456</td>
</tr>
<tr>
<td>$h_2(1,1)$</td>
<td>-1.62</td>
<td>-1.5810</td>
<td>0.2567</td>
<td>-1.6689</td>
</tr>
<tr>
<td>$h_2(2,2)$</td>
<td>1.41</td>
<td>1.4221</td>
<td>0.0647</td>
<td>1.4527</td>
</tr>
<tr>
<td>$h_2(0,1)$</td>
<td>3.72</td>
<td>3.8642</td>
<td>0.1982</td>
<td>3.5822</td>
</tr>
<tr>
<td>$h_2(0,2)$</td>
<td>1.86</td>
<td>1.8719</td>
<td>0.0894</td>
<td>2.0001</td>
</tr>
<tr>
<td>$h_2(1,2)$</td>
<td>0.76</td>
<td>0.7183</td>
<td>0.1884</td>
<td>0.7557</td>
</tr>
<tr>
<td>γ_2,x</td>
<td>1</td>
<td>1.0665</td>
<td>0.0656</td>
<td>0.8893</td>
</tr>
<tr>
<td>γ_3,x</td>
<td>1.99</td>
<td>1.9444</td>
<td>0.1667</td>
<td>2.1234</td>
</tr>
<tr>
<td>γ_4,x</td>
<td>8.91</td>
<td>9.0189</td>
<td>0.2002</td>
<td>9.3250</td>
</tr>
</tbody>
</table>

Table 10. Model 2: comparison of the identified Volterra parameters with respect to the real ones (under i.i.d. excitation). SNR = 20 dB, probability of crossover = 0.09, probability of mutation = 0.02.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Real values</th>
<th>New algorithm</th>
<th>h-NN</th>
<th>LPNN</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h_2(0,0)$</td>
<td>0.21</td>
<td>0.2245</td>
<td>0.0621</td>
<td>0.2254</td>
</tr>
<tr>
<td>$h_2(1,1)$</td>
<td>-1.62</td>
<td>-1.6434</td>
<td>0.0333</td>
<td>-1.6445</td>
</tr>
<tr>
<td>$h_2(2,2)$</td>
<td>1.41</td>
<td>1.4374</td>
<td>0.1154</td>
<td>1.4333</td>
</tr>
<tr>
<td>$h_2(0,1)$</td>
<td>3.72</td>
<td>3.7258</td>
<td>0.0536</td>
<td>3.7818</td>
</tr>
<tr>
<td>$h_2(0,2)$</td>
<td>1.86</td>
<td>1.9032</td>
<td>0.1675</td>
<td>1.8999</td>
</tr>
<tr>
<td>$h_2(1,2)$</td>
<td>0.76</td>
<td>0.7518</td>
<td>0.0431</td>
<td>0.7654</td>
</tr>
<tr>
<td>γ_2,x</td>
<td>1</td>
<td>1.0183</td>
<td>0.0311</td>
<td>0.9872</td>
</tr>
<tr>
<td>γ_3,x</td>
<td>1.99</td>
<td>2.0096</td>
<td>0.1186</td>
<td>2.0002</td>
</tr>
<tr>
<td>γ_4,x</td>
<td>8.91</td>
<td>8.9322</td>
<td>0.0946</td>
<td>9.1058</td>
</tr>
</tbody>
</table>

Appendix

Cumulants

Let $x = [x_1, x_2, \ldots, x_k]^T$ denote a vector of real random variables. A cumulant of these random variables is defined as a coefficient of the vector $v = [v_1, v_2, \ldots, v_k]^T$ in the Taylor series expansion (if it exists) of the cumulant generating function $K(v) = \ln(E(\exp(jvT)))$.

The cumulant is therefore defined in terms of its joint moments of orders up to. For zero-mean real random variables, the first, second, and third order cumulants are given by

$$
cum(x_1) = E\{x_1\} (A-1), \quad (A1)$$

$$
cum(x_1, x_2) = E\{x_1 x_2\},$$

$$
cum(x_1, x_2, x_3) = E\{x_1 x_2 x_3\}.$$

In the case of nonzero mean real random variables, one replaces x_i by $x_i - E\{x_i\}$ in these formulas. Let $\{x(n)\}$ be a zero-mean k-th order stationary discrete time random process. The k-th order cumulant of this process, denoted $c_{k,x}(\tau_1, \tau_2, \ldots, \tau_{k-1})$, is defined as the joint k-th order cumulant of the random variables $x(n), x(n + \tau_1), \ldots, x(n + \tau_{k-1})$, i.e.,

$$
c_{k,x}(\tau_1, \tau_2, \ldots, \tau_{k-1}) = cum(x(n), x(n + \tau_1), \ldots, x(n + \tau_{k-1})). \quad (A2)$$

Because of the stationarity assumption, the k-th order cumulant is only a function of the $k-1$ lags $\tau_1, \tau_2, \ldots, \tau_{k-1}$. The $\tau_1 - \tau_2 - \ldots - \tau_{k-1}$ space constitutes the domain of support for $c_{k,x}(\tau_1, \tau_2, \ldots, \tau_{k-1})$.

From (A1) and (A2), the second and third order cumulants of zero-mean are given by

$$
c_{2,x}(\tau) = E\{x(n)x(n + \tau)\},$$

$$
c_{3,x}(\tau_1, \tau_2) = E\{x(n)x(n + \tau_1)x(n + \tau_2)\}.$$

Of course, the second order cumulant $C_{2,x}(\tau)$ is just the autocorrelation of $x(n)$. We shall use a more familiar notation for autocorrelation, namely, $r_x(\tau)$, interchangeably with $C_{2,x}(\tau)$.

Fundamental properties of cumulants may be summarized as follows:

(i) $$
cum[\beta_1 x_1, \beta_2 x_2, \ldots, \beta_k x_k] = \left(\prod_{i=1}^{k} \beta_i\right) \cum[x_1, x_2, \ldots, x_k]$$
where \(\{ \beta_i \}_{i=1,2,...,k} \) are constants.

(ii) Cumulants are symmetric functions in their arguments:

\[
\text{cum}[x_1, x_2, \ldots, x_k] = \text{cum}[x_{i_1}, x_{i_2}, \ldots, x_{i_k}],
\]

where \((i_1, i_2, \ldots, i_k)\) are obtained from a permutation of \((1, 2, \ldots, k)\).

(iii) Cumulants are additive in their arguments:

\[
\text{cum}[y + z, x_1, x_2, \ldots, x_k] = \text{cum}[y, x_1, x_2, \ldots, x_k] + \text{cum}[z, x_1, x_2, \ldots, x_k],
\]

where \(y\) and \(z\) are two random variables.

(iv) If the random variables \(\{x_i\}_{i=1,2,...,k} \) can be divided into two or more groups which are statistically independent, their order cumulant is zero:

\[
\text{cum}[x_1, x_2, \ldots, x_k] = 0.
\]