PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 25 | 4 | 803-814
Tytuł artykułu

Observability and controllability analysis for sandwich systems with backlash

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, an approach to analyze the observability and controllability of sandwich systems with backlash is proposed. In this method, a non-smooth state-space function is used to describe the sandwich systems with backlash which are also non-smooth non-linear systems. Then, a linearization method based on non-smooth optimization is proposed to derive a linearized state-space function to approximate the non-smooth sandwich systems within a bounded region around the equilibrium point that we are interested in. Afterwards, both observability and controllability matrices are constructed and the methods to analyze the observability as well as controllability of sandwich system with backlash are derived. Finally, numerical examples are presented to validate the proposed method.
Rocznik
Tom
25
Numer
4
Strony
803-814
Opis fizyczny
Daty
wydano
2015
otrzymano
2014-07-24
poprawiono
2015-04-10
Twórcy
autor
  • College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
  • School of General Education, Sanda University, 2727 Jinhai Road, Shanghai, 201209, China
autor
  • College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
autor
  • College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
Bibliografia
  • Balachandran, K. and Shanmugam, D. (2014). Controllability of nonlinear implicit fractional integrodifferential systems, International Journal of Applied Mathematics and Computer Science 24(4): 713-722, DOI: 10.2478/amcs-2014-0052.
  • Clarke, F.H. (1983). Optimization and Nonsmooth Analysis, John Wiley, New York, NY.
  • Dong, R., Tan, Y., Chen, H. and Xie, Y. (2012). Nonsmooth recursive identification of sandwich systems with backlash-like hysteresis, Journal of Applied Mathematics 2012: 1-16, ID 457601.
  • Herman, R. and Krener, A. (1977). Nonlinear controllability and observability, IEEE Transactions on Automatic Control 22(5): 728-740.
  • Isidori, A. (1989). Nonlinear Control Systems, Springer, London.
  • Jank, G. (2002). Controllability, observability and optimal control of continuous-time 2-D systems, International Journal of Applied Mathematics and Computer Science 12(2): 181-195.
  • Kalman, R., Falb, P. and Arbib, M. (1969). Topics in Mathematical System Theory, Mc Graw-Hill Company, New York, NY.
  • Karthikeyan, S., Balachandran, K. and Murugesan, S. (2015). Controllability of nonlinear stochastic systems with multiple time-varying delays in control, International Journal of Applied Mathematics and Computer Science 25(2): 207-215, DOI: 10.1515/amcs-2015-0015.
  • Klamka, J. (1975). On the global controllability of perturbed nonlinear systems, IEEE Transactions on Automatic Control 20(1): 170-172.
  • Klamka, J. (1991). Controllability of Dynamical Systems, Kluwer Academic Publishers, Dordrecht.
  • Klamka, J. (2002). Controllability of nonlinear discrete systems, American Control Conference, Anchorage, AK, USA, pp. 4670-4671.
  • Klamka, J. (2013a). Constrained controllability of second order dynamical systems with delay, Control and Cybernetics 42(1): 111-121.
  • Klamka, J. (2013b). Controllability of dynamical systems: A survey, Bulletin of the Polish Academy of Sciences: Technical Sciences 61(2): 221-229.
  • Klamka, J., Czornik, A. and Niezabitowski, M. (2013). Stability and controllability of switched systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 61(3): 547-554.
  • Koplon, R. and Sontag, E. (1993). Linear systems with sign observations, SIAM Journal Control and Optimization 31(12): 1245-1266.
  • Mincheko, L. and Sirotko, S. (2002). Controllability of non-smooth discrete systems with delay, Optimization 51(1): 161-174.
  • Murphey, T. and Burdick, J. (2002). Nonsmooth controllability theory and an example, 41st IEEE Conference on Decision and Control, Las Vegas, NV, USA, pp. 370-376.
  • Nordin, M. and Gutman, P.O. (2002). Controlling mechanical systems with backlash-a survey, Automatica 38(4): 1633-1649.
  • Qi, L. and Sun, J. (1993). A nonsmooth version of Newton's method, Mathematical Programming 58(3): 353-367.
  • Rockafellar, R.T. and Wets, R. J.B. (1998). Variational Analysis, Springer, Berlin.
  • Sontag, E. (1979). On the observability of polynomial systems, I: Finite-time problems, SIAM Journal of Control and Optimization 17(1): 139-151.
  • Sussmann, H. (1979). Single-input observability of continuous-time systems, Mathematical Systems Theory 12(3): 371-393.
  • van der Schaft, A.J. (1982). Observability and controllability for smooth nonlinear systems, SIAM Journal of Control and Optimization 20(3): 338-354.
  • Zhirabok, A. and Shumsky, A. (2012). An approach to the analysis of observability and controllability in nonlinear systems via linear methods, International Journal of Applied Mathematics and Computer Science 22(3): 507-522, DOI: 10.2478/v10006-012-0038-1.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-amcv25i4p803bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.