Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 25 | 2 | 389-401
Tytuł artykułu

A fuzzy nonparametric Shewhart chart based on the bootstrap approach

Treść / Zawartość
Warianty tytułu
Języki publikacji
In this paper, we consider a nonparametric Shewhart chart for fuzzy data. We utilize the fuzzy data without transforming them into a real-valued scalar (a representative value). Usually fuzzy data (described by fuzzy random variables) do not have a distributional model available, and also the size of the fuzzy sample data is small. Based on the bootstrap methodology, we design a nonparametric Shewhart control chart in the space of fuzzy random variables equipped with some L2 metric, in which a novel approach for generating the control limits is proposed. The control limits are determined by the necessity index of strict dominance combined with the bootstrap quantile of the test statistic. An in-control bootstrap ARL of the proposed chart is also considered.
Opis fizyczny
  • Department of Statistics, School of Economics and Statistics, Guangzhou University, 230 Waihuanxi Road, Guangzhou, 510006, PR China
  • Systems Research Institute, Polish Academy of Sciences, Newelska 6, 01-447 Warsaw, Poland
  • Cen, Y. (1996). Fuzzy quality and analysis on fuzzy probability, Fuzzy Sets and Systems 83(2): 283-290.
  • Cheng, C.-B. (2005). Fuzzy process control: Construction of control charts with fuzzy numbers, Fuzzy Sets and Systems 154(2): 287-303.
  • Couso, I., Dubois, D., Montes, S. and Sanchez, L. (2007). On various definitions of the variance of a fuzzy random variable, Proceedings of the 5th International Symposium on Imprecise Probabilities and Their Applications, Prague, Czech Republic, 056.html.
  • Dubois, D. and Prade, H. (1983). Ranking fuzzy numbers in the setting of possibility theory, Information Sciences 30(3): 183-224.
  • Efron, B. and Tibshirani, R. (1993). An Introduction to the Bootstrap, Chapman-Hall, New York, NY.
  • Faraz, A. and Shapiro, A. (2010). An application of fuzzy random variables to control charts, Fuzzy Sets and Systems 161(20): 2684-2694.
  • Feng, Y., Hu, L. and Shu, H. (2001). The variance and covariance of fuzzy random variables and their applications, Fuzzy Sets and Systems 120(3): 487-497.
  • Féron, R. (1976). Ensembles aléatoires flous, Comptes Rendus de l'Academie des Sciences Serie A 282: 903-906.
  • Gil, M., López-Diaz, M. and Ralescu, D.A. (2006). Overview on the development of fuzzy random variables, Fuzzy Sets and Systems 157(19): 2546-2557.
  • Grzegorzewski, P. and Hryniewicz, O. (2000). Soft methods in statistical quality control, Control and Cybernetics 29(1): 119-140.
  • Gülbay, M. and Kahraman, C. (2006). Development of fuzzy process control charts and fuzzy unnatural pattern analysis, Computational Statistics and Data Analysis 51(1): 433-451.
  • Gülbay, M. and Kahraman, C. (2007). An alternative approach to fuzzy control charts: Direct fuzzy approach, Information Sciences 177(6): 1463-1480.
  • Höppner, J. (1994). Statistische Prozeßkontrolle mit FuzzyDaten, Ph.D. thesis, University of Ulm, Ulm.
  • Höppner, J. and Wolff, H. (1995). The design of a Shewhart control chart for fuzzy data, Technical report, University of Ulm, Würzburg.
  • Hryniewicz, O. (2006). Possibilistic decisions and fuzzy statistical tests, Fuzzy Sets and Systems 157(19): 2665-2673.
  • Kanagawa, A., Tamaki, F. and Ohta, H. (1993). Control charts for process average and variability based on linguistic data, International Journal of Production Research 2(4): 913-922.
  • Körner, R. (1997). On the variance of fuzzy random variables, Fuzzy Sets and Systems 92(1): 83-93.
  • Körner, R. (2000). An asymptotic α-test for the expectation of random fuzzy variables, Journal of Statistical Planning and Inference 83(2): 331-346.
  • Kruse, R. and Meyer, K. (1987). Statistics with Vague Data, D. Riedel, Dordrecht.
  • Kwakernaak, H. (1978). Fuzzy random variables, Part I: Definitions and theorems, Information Sciences 15(1): 1-15.
  • Kwakernaak, H. (1979). Fuzzy random variables, Part II: Algorithms and examples for the discrete case, Information Sciences 17(3): 253-278.
  • Liu, R. and Tang, J. (1996). Control charts for dependent and independent measurements based on bootstrap methods, Journal of American Statistical Association 91(436): 1694-1700.
  • Montenegro, M., Colubi, A., Casals, M. and Gil, M. (2004). Asymptotic and bootstrap techniques for testing the expected value of a fuzzy random variable, Metrika 59(1): 31-49.
  • Näther, W. (2000). On random fuzzy variables of second order and their application to linear statistical inference with fuzzy data, Metrika 51(3): 201-221.
  • Näther, W. (2006). Regression with fuzzy random data, Computational Statistics and Data Analysis 51(1): 235-252. X̅ control chart, Jour
  • Nelson, L. (1985). Interpreting Shewhart X̅ control chart, Journal of Quality Technology 17(2): 114-116.
  • Puri, M. and Ralescu, D. (1986). Fuzzy random variables, Journal of Mathematical Analysis and Applications 114(2): 409-422.
  • Raz, T. and Wang, J. (1990). Probabilistic and membership approaches in the construction of control charts for linguistic data, Production Planning & Control 1(3): 147-157.
  • Senturk, S. and Erginel, N. (2009). Development of fuzzy x̅̃ - R̃ and x̅̃ - S̃ control charts using α-cuts, Information Sciences 179(10): 1542-1551.
  • Shu, M.-H. and Wu, H.-C. (2011). Fuzzy X̅ and r control charts: Fuzzy dominance approach, Computers & Industrial Engineering 61(3): 676-685.
  • Taleb, H. (2009). Control charts applications for multivariate attribute processes, Computers & Industrial Engineering 56(1): 399-410.
  • Taleb, H. and Limam, M. (2002). On fuzzy and probabilistic control charts, International Journal of Production Research 40(12): 2849-2863.
  • Wang, J. and Raz, T. (1990). On the construction of control charts using linguistic variables, International Journal of Production Research 28: 477-487.
  • Wetherill, B. and Brown, D. (1991). Statistical Process Control, Chapman and Hall, London.
  • Woodall, W.H. Tsui, K.-L. and Tucker, G.R. (1997). A review of statistical and fuzzy quality control charts based on categorical data, in H.-H. Lenz and P.-Th. Wilrich (Eds.), Frontiers in Statistical Quality Control 5, Physica-Verlag, Heidelberg, pp. 83-89.
  • Zadeh, L. (1965). Fuzzy sets, Information and Control 8(3): 338-353.
  • Zadeh, L. (1975). The concept of a linguistic variable and its application to approximate reasoning, Parts 1 and 2, Information Sciences 8(3): 199-249, 8(4): 301-357.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.