PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 25 | 2 | 269-279
Tytuł artykułu

Genetic and combinatorial algorithms for optimal sizing and placement of active power filters

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper deals with cost effective compensator placement and sizing. It becomes one of the most important problems in contemporary electrical networks, in which voltage and current waveform distortions increase year-by-year reaching or even exceeding limit values. The suppression of distortions could be carried out by means of three types of compensators, i.e., passive filters, active power filters and hybrid filters. So far, passive filters have been more popular mainly because of economic reasons, but active and hybrid filters have some advantages which should cause their wider application in the near future. Active power filter placement and sizing could be regarded as an optimization problem. A few objective functions have been proposed for this problem. In this paper we compare solutions obtained by means of combinatorial and genetic approaches. The theoretical discussion is followed by examples of active power filter placement and sizing.
Rocznik
Tom
25
Numer
2
Strony
269-279
Opis fizyczny
Daty
wydano
2015
otrzymano
2014-05-20
poprawiono
2014-09-12
Twórcy
  • Institute of Electrical Engineering and Computer Science, Silesian University of Technology, ul. Akademicka 10, 44-100 Gliwice, Poland
  • Institute of Electrical Engineering and Computer Science, Silesian University of Technology, ul. Akademicka 10, 44-100 Gliwice, Poland
autor
  • Institute of Electrical Engineering and Computer Science, Silesian University of Technology, ul. Akademicka 10, 44-100 Gliwice, Poland
Bibliografia
  • Abu-Hashim, R., Burch, R., Chang, G., Grady, M., Gunther, E., Halpin, M., Harziadonin, C., Liu, Y., Marz, M., Ortmeyer, T., Rajagopalan, V., Ranade, S., Ribeiro, P., Sim, T. and Xu, W. (1999). Test systems for harmonics modeling and simulation, IEEE Transactions on Power Delivery 14(2): 579-587.
  • Akagi, H. (2006). Modern active filters and traditional passive filters, Bulletin of the Polish Academy of Sciences: Technical Sciences 54(3): 255-269.
  • Bonner, A., Grebe, T., Gunther, E., Hopkins, L., Man, M., Mahseredjian, J., Miller, N., Ortmeyer, T., Rajagopalan, V., Ranade, S., Ribeiro, P., Spherling, B., Sims, T. and Xu, W. (1996). Modeling and simulation of the propagation of harmonics in electric power networks, II: Sample systems and examples, IEEE Transactions on Power Delivery 11(1): 466-474.
  • Carpinelli, G., Ferruzzi, G. and Russo, A. (2013). Trade-off analysis to solve a probabilistic multi-objective problem for passive filtering system planning, International Journal of Emerging Electric Power Systems 14(3): 275-284.
  • Chang, G., Chu, S.-Y. and Wang, H. (2006). A new method of passive harmonic filter planning for controlling voltage distortion in a power system, IEEE Transactions on Power Delivery 21(1): 305-312.
  • Christie, R. (1993). Power systems test case archive, www.ee.washington.edu/research/pstca/.
  • Dehghani, N. and Ziari, I. (2008). Optimal allocation of APLCs using genetic algorithm, Proceedings of 43rd International Universities Power Engineering Conference UPEC, Padova, Italy, pp. 1-4.
  • Dehini, R. and Sefiane, S. (2011). Power quality and cost improvement by passive power filters synthesis using ant colony algorithm, Journal of Theoretical and Applied Information Technology 23(2): 70-79.
  • Dzieciątko, M. (2001). Application of Combinatorial Optimization Methods to Solution of Higher Harmonics Compensation Problems, Ph.D. thesis, Warsaw University of Technology, Warsaw.
  • Fuchs, E., Roesler, D. and Masoum, M. (2004). Are harmonic recommendations according to IEEE and IEC too restrictive?, IEEE Transactions on Power Delivery 19(4): 1775-1786.
  • Gehrke, C.S., Lima, A.M.N. and Oliveira, A.C. (2012a). Cooperative control for active power compensators allocated in distributed networks, Proceedings of the IEEE Energy Conversion Congress and Exposition, Raleigh, NC, USA, pp. 2764-2768.
  • Gehrke, C.S., Lima, A.M.N. and Oliveira, A.C. (2012b). Evaluating APLCs placement in a power system based on real-time simulation, Proceedings of the IEEE Energy Conversion Congress and Exposition, Raleigh, NC, USA, pp. 2011-2016.
  • González-Romera, E., Romero-Cadaval, E., Ruíz-Arranz, S. and Milanés-Montero, M. (2012). Overall power quality correction in distribution networks by active power filters, optimization of location and strategy, Przegląd Elektrotechniczny 88(1A): 51-55.
  • Grabowski, D. and Maciążek, M. (2012). Cost effective allocation and sizing of active power filters using genetic algorithms, Proceedings of the 12th International Conference on Environment and Electrical Engineering EEEIC, Wrocław, Poland, pp. 467-472.
  • Grabowski, D., Maciążek, M. and Pasko, M. (2013). Sizing of active power filters using some optimization strategies, International Journal for Computation and Mathematics in Electrical and Electronic Engineering COMPEL 32(4): 1326-1336.
  • Grabowski, D. and Walczak, J. (2012). Strategies for optimal allocation and sizing of active power filters, Proceedings of the 11th International Conference on Environment and Electrical Engineering EEEIC, Venice, Italy, pp. 1198-1103.
  • Grady, W.M. (2010). PCFLO v6 users manual, users.ece.utexas.edu/∼grady/.
  • He, N., Xu, D. and Huang, L. (2009). The application of particle swarm optimization to passive and hybrid active power filter design, IEEE Transactions on Industrial Electronics 56(8): 2841-2851.
  • Helmi, B.H., Rahmani, A.T. and Pelikan, M. (2014). A factor graph based genetic algorithm, International Journal of Applied Mathematics and Computer Science 24(3): 621-633, DOI: 10.2478/amcs-2014-0045.
  • Hong, Y.-Y. and Chang, Y.-K. (1996). Determination of locations and sizes for active power line conditioners to reduce harmonics in power systems, IEEE Transactions on Power Delivery 11(3): 1610-1617.
  • IEEE (1992). IEEE Recommended practices and requirements for harmonic control in electric power systems, Std 5191992.
  • Deep, K., Singh, K.P., Kansal, M.K. and Mohan, C. (2009). A real coded genetic algorithm for solving integer and mixed integer optimization problems, Applied Mathematics and Computation 212(2): 505-518.
  • Kennedy, K., Lightbody, G., Yacamini, R., Murray, M. and Kennedy, J. (2006). Online control of an APLC for network-wide harmonic reduction, IEEE Transactions on Power Delivery 21(1): 432-439.
  • Keypour, R., Seifi, H. and Yazdian-Varjani, A. (2004). Genetic based algorithm for active power filter allocation and sizing, Electric Power Systems Research 71(1): 41-49.
  • Lewandowski, M., Maciążek, M. and Grabowski, D. (2011). Integration of Matlab and PCFLO for harmonic flow analysis in a power system containing APF, Proceedings of the 34th International Conference on Fundamentals of Electrotechnics and Circuit Theory IC-SPETO, Ustroń, Poland, pp. 89-90.
  • Maciążek, M. (2012). Power theories applications to control active compensators, in G. Benysek and M. Pasko (Eds.), Power Theories for Improved Power Quality, Springer, London, pp. 49-116.
  • Maciążek, M., Grabowski, D. and Pasko, M. (2013). Active power filters-optimization of sizing and placement, Bulletin of the Polish Academy of Sciences: Technical Sciences 61(4): 847-853.
  • Moradifar, A. and Soleymanpour, H.R. (2012). A fuzzy based solution for allocation and sizing of multiple active power filters, Journal of Power Electronics 12(5): 830-841.
  • Mouatasim, A.E., Ellaia, R. and de Cursi, E. (2011). Random perturbation of the projected variable metric method for nonsmooth nonconvex optimization problems with linear constraints, International Journal of Applied Mathematics and Computer Science 21(2): 317-329, DOI: 10.2478/v10006-011-0024-z.
  • Pamplona, F.M.P. and Souza, B.A. (2004). Harmonic passive filter planning in radial distribution systems using microgenetic algorithms, Proceedings of the 11th International Conference on Harmonics and Quality of Power, New York, NY, USA, pp. 739-744.
  • Rafiei, S.M.R., Kordi, M.H., Griva, G. and Yassami, H. (2010). Multi-objective optimization based optimal compensation strategies study for power quality enhancement under distorted voltages, Proceedings of the IEEE International Symposium on Industrial Electronics, Bari, Italy, pp. 3284-3291.
  • Ramos, D.F.U., Cortes, J., Torres, H., Gallego, L.E., Delgadillo, A. and Buitrago, L. (2006). Implementation of genetic algorithms in ATP for optimal allocation and sizing of active power line conditioners, Proceedings of the IEEE/PES Transmission and Distribution Conference and Exposition, Caracas, Venezuela, pp. 1-5.
  • Yamamoto, F., Kitamura, A., Fujita, N., Nakanishi, Y. and Nagasawa, M. (1999). A study on optimal locations and sizes of active filters as an additional function of distributed generation systems, Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics SMC, Tokyo, Japan, Vol. 6, pp. 515-520.
  • Yan-Song, W., Hua, S., Xue-min, L., Jun, L. and Song-bo, G. (2010). Optimal allocation of the active filters based on the TABU algorithm in distribution network, Proceedings of the International Conference on Electrical and Control Engineering ICECE, Wuhan, China, pp. 1418-1421.
  • Yue, H., Li, G., Zhou, M., Wang, K. and Wang, J. (2011). Multi-objective optimal power filter planning in distribution network based on fast nondominated sorting genetic algorithms, Proceedings of the 4th International Conference on Electric Utility Deregulation and Restructuring and Power Technologies, Weihai, China, pp. 234-240.
  • Ziari, I. and Jalilian, A. (2010). A new approach for allocation and sizing of multiple active power-line conditioners, IEEE Transactions on Power Delivery 25(2): 1026-1035.
  • Ziari, I. and Jalilian, A. (2012). Optimal placement and sizing of multiple APLCs using a modified discrete PSO, International Journal of Electrical Power and Energy Systems 43(1): 630-639.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-amcv25i2p269bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.