ROBUST QUASI–LPV MODEL REFERENCE FTC OF A QUADROTOR UAV SUBJECT TO ACTUATOR FAULTS

DAMIANO ROTONDO a,∗, FATIHA NEJJARI a, VICENÇ PUIG a,b

a Automatic Control Department
Polytechnic University of Catalonia (UPC), Rambla de Sant Nebridi, 11, 08222 Terrassa, Spain
e-mail: damiano.rotondo@yahoo.it, (fatiha.nejjari, vicenc.puig)@upc.edu

b Institute of Robotics and Industrial Informatics
UPC-CSIC, Carrer de Llorens i Artigas, 4-6, 08028 Barcelona, Spain

A solution for fault tolerant control (FTC) of a quadrotor unmanned aerial vehicle (UAV) is proposed. It relies on model reference-based control, where a reference model generates the desired trajectory. Depending on the type of reference model used for generating the reference trajectory, and on the assumptions about the availability and uncertainty of fault estimation, different error models are obtained. These error models are suitable for passive FTC, active FTC and hybrid FTC, the latter being able to merge the benefits of active and passive FTC while reducing their respective drawbacks. The controller is generated using results from the robust linear parameter varying (LPV) polytopic framework, where the vector of varying parameters is used to schedule between uncertain linear time invariant (LTI) systems. The design procedure relies on solving a set of linear matrix inequalities (LMIs) in order to achieve regional pole placement and H_∞ norm bounding constraints. Simulation results are used to compare the different FTC strategies.

Keywords: linear parameter varying systems, fault tolerant control, quadrotor, model reference-based control, linear matrix inequalities.

1. Introduction

In the last years, unmanned aerial vehicles (UAVs) have become an important topic of research because of their characteristics that make them ideal vehicles for several applications, such as security, traffic surveillance, management of natural risks, environment exploration, agriculture and military (Sharifi et al., 2010). Considerable efforts have been made to control these vehicles, applying techniques ranging from PID control (Hoffmann and Waslander, 2008) to nonlinear control techniques (Chowdhary et al., 2014), such as dynamic feedback control (Mokhtari and Benallegue, 2004), backstepping (Aranjo-Estrada et al., 2009; Guenard et al., 2008), nested saturations (Castillo et al., 2005), predictive/nonlinear H_∞ control (Raffo et al., 2010) and quaternion-based feedback for event-triggered stabilization (Guerrero-Castellano et al., 2013).

Recently, some works have considered fault detection and diagnosis (FDD) and fault tolerant control (FTC) for UAVs (Zhang et al., 2013); see Table 1. Generally speaking, FTC techniques can be classified into two types: passive and active (see the works of Zhang and Jiang (2008) as well as Benosman (2010) for reviews). In passive techniques, controllers are fixed and designed to be robust against a class of presumed faults. This approach needs neither FDD schemes nor controller reconfiguration, but it has limited fault-tolerant capabilities. On the other hand, active techniques react to system component failures actively by reconfiguring control actions so that the stability and acceptable performance of the entire system can be maintained. In such control systems, the controller compensates for the impacts of the faults either by selecting a pre-computed control law or by synthesizing a new one on-line. In the last years, some comparative studies between passive and active FTC techniques have appeared (see, e.g., Jiang and Yu, 2012; Rotondo et al., 2013b). A comparison of active and passive FTC strategies shows the importance of investigating the design of hybrid techniques that can merge the benefits of active and passive FTC, while

∗Corresponding author
few papers that have appeared recently (e.g., Maki et al., 2009; 2012; Rotondo et al., 2013a; 2013c). In the last decades, the linear parameter varying (LPV) paradigm has become a standard formalism in systems and control, for analysis, controller synthesis and system identification (Shamma, 2012). This class of systems is important because, by embedding the system nonlinearities in the varying parameters, gain-scheduling control of nonlinear systems can be performed using an extension of linear techniques (in this case, the system is referred to as quasi-LPV since the varying parameters depend on exogenous signals). Some applications of LPV control theory to quadrotor UAVs can be found in the recent literature (Budyono and Sutarto, 2006; Rangajeewa and Whidborne, 2011; Serirojanakul and Wongaisuwan, 2012; Rotondo et al., 2014).

Recently, the robust LPV polytopic framework, obtained by extending known results from the robust polytopic and the LPV polytopic control area has been introduced (Rotondo et al., 2013a; 2013c). In the proposed framework, the vector of varying parameters is used to schedule between uncertain LTI systems. The resulting approach consists in using a double-layer polytopic description to take into account both variability due to the parameter vector and uncertainty. The first polytopic layer manages the varying parameters and is used to obtain vertex uncertain systems, where vertex controllers are designed. The second polytopic layer is built in each vertex system to take into account model uncertainties and add robustness in the design step.

In this paper, a solution to the fault tolerant control problem is proposed for a quadrotor UAV. This solution relies on the use of a reference model that describes the desired trajectory. The idea of using a model reference-based control is well-established in the LTI framework (Landau, 1979) and has been recently extended to cope with the control of LPV systems (Abdullah and Zribi, 2009). Depending on the type of reference model used for generating the reference trajectory and on the assumptions about the availability and uncertainty of fault estimation, different error models are obtained. In the first one, faults enter into the system as if they were perturbations, making such an error model suitable for passive FTC (see Fig. 1). The second one is scheduled by faults, and it is referred to as the active FTC error model (see Fig. 2). Finally, in the third one, the error model is scheduled by the fault and considers the fault estimation uncertainty as a perturbation and an uncertainty at the same time: this model will be used for hybrid FTC (the scheme shown in Fig. 2 is valid in this case, too). The controller is obtained using theoretical results from the robust LPV polytopic framework and linear matrix inequalities (LMIs), in order to achieve regional pole placement and \mathcal{H}_∞ norm bounding constraints. Simulation results are used to compare the different FTC strategies.

It is worth highlighting that, in the active and hybrid FTC cases, the overall scheme should include a module that provides fault estimation using some available measurements and the knowledge about the mathematical model of the system, as shown in Fig. 2. Furthermore, a fault detection and isolation (FDI) module could be added in order to reduce on-line the number of faults taken into consideration by the fault tolerant controller, allowing increasing the obtainable performance, as shown by Rotondo et al. (2013c). However, the fault detection, fault isolation and fault estimation problems, for which some recent solutions have been proposed (Zhang et al., 2013; Izadi et al., 2010; 2011; Rotondo et al., 2012; Zhaozhou and Noura, 2013; Aguilar-Sierra et al., 2014; Cen et al., 2014), are not considered in this article. Indeed, the main goal of this work is to propose an FTC strategy that efficiently takes into account the information available from a fault estimator, independently of the fault estimation algorithm considered, and to show that it is possible to increase the FTC robustness using a hybrid passive/active FTC approach thanks to the robust LPV framework.

The paper is structured as follows. Section 2 introduces the dynamic model of the quadrotor, the reference and error models that are used for passive FTC, active FTC and hybrid FTC. Section 3 presents the robust LPV framework and the error feedback controller design.

Table 1. Techniques applied for fault tolerant control.

<table>
<thead>
<tr>
<th>Technique</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>model predictive control (MPC)</td>
<td>Izadi et al., 2010</td>
</tr>
<tr>
<td></td>
<td>Yu et al., 2011</td>
</tr>
<tr>
<td>feedback linearization (FL)</td>
<td>Freddi et al., 2011</td>
</tr>
<tr>
<td>model reference adaptive control (MRAC)</td>
<td>Dydek et al., 2010a</td>
</tr>
<tr>
<td></td>
<td>Sadeghzadeh et al., 2011a</td>
</tr>
<tr>
<td></td>
<td>Sadeghzadeh et al., 2011b</td>
</tr>
<tr>
<td></td>
<td>Chamseidine et al., 2011</td>
</tr>
<tr>
<td>control allocation</td>
<td>Zhou et al., 2010</td>
</tr>
<tr>
<td></td>
<td>Chamseidine et al., 2012</td>
</tr>
<tr>
<td>gain-scheduled PID</td>
<td>Sadeghzadeh et al., 2011a</td>
</tr>
<tr>
<td></td>
<td>Sadeghzadeh et al., 2011b</td>
</tr>
<tr>
<td></td>
<td>Mihhim et al., 2010</td>
</tr>
<tr>
<td></td>
<td>Amoozgat et al., 2012</td>
</tr>
<tr>
<td>backstepping</td>
<td>Zhang et al., 2010</td>
</tr>
<tr>
<td></td>
<td>Kliebache et al., 2012</td>
</tr>
<tr>
<td>sliding mode control (SMC)</td>
<td>Shariati et al., 2010</td>
</tr>
<tr>
<td></td>
<td>Li et al., 2013</td>
</tr>
<tr>
<td></td>
<td>Merheb et al., 2013</td>
</tr>
<tr>
<td>adaptive control</td>
<td>Zhang and Zhang, 2010</td>
</tr>
</tbody>
</table>
using LMI-based techniques. In Section 4, reference input calculation for trajectory tracking is discussed. Simulation results are shown in Section 5. Finally, the main conclusions are outlined in Section 6.

2. Quadrotor modeling

The quadrotor is a vehicle that has four propellers in a cross configuration. Two propellers can rotate in a clockwise direction, while the other two can rotate anticlockwise. The quadrotor is moved by changing the rotor speeds. For example, by increasing or decreasing together the four propeller speeds, a vertical motion is achieved. Changing only the speeds of the propellers situated oppositely produces either roll or lateral motions. Finally, a yaw rotation results from the difference in the counter-torque between each pair of propellers.

Let us consider an earth fixed frame \(\{X \ Y \ Z\} \) and a body fixed frame \(\{x_b \ y_b \ z_b\} \) with the origin in the quadrotor center of mass. Under the assumptions that the body is rigid and symmetrical, and the propellers are rigid, i.e., no blade flapping occurs, the quadrotor faulty dynamic model is described by the following equations, obtained by Bouabdallah et al. (2004), adding multiplicative faults in the actuators (\(\Omega_i \rightarrow f_i \Omega_i \)):

\[
\ddot{x}_b = (\cos \phi \sin \theta \cos \psi + \sin \phi \sin \psi) \frac{U_1^f}{m},
\]

\[
\ddot{y}_b = (\cos \phi \sin \theta \sin \psi + \sin \phi \cos \psi) \frac{U_1^f}{m},
\]

\[
\ddot{z}_b = -g + \cos \phi \cos \theta \frac{U_1^f}{m},
\]

\[
\ddot{\phi} = \frac{\dot{\theta} \dot{\psi} I_y - I_x}{I_x} + \frac{J_{TP} f}{I_x} \phi \Omega_f + \frac{W_2^f}{I_x},
\]

\[
\ddot{\theta} = \frac{\dot{\phi} \dot{\psi} I_y - I_x}{I_y} + \frac{J_{TP} f}{I_y} \phi \Omega_f + \frac{W_3^f}{I_y},
\]
Table 2. System parameters.

<table>
<thead>
<tr>
<th>Param.</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>J_x</td>
<td>Body moment of inertia</td>
<td>8.1×10^{-3} [Nm²]</td>
</tr>
<tr>
<td>I_y</td>
<td>Body moment of inertia</td>
<td>8.1×10^{-3} [Nm²]</td>
</tr>
<tr>
<td>I_z</td>
<td>Body moment of inertia</td>
<td>14.2×10^{-3} [Nm²]</td>
</tr>
<tr>
<td>m</td>
<td>Mass of the quadrotor</td>
<td>1 [kg]</td>
</tr>
<tr>
<td>J_{TP}</td>
<td>Total rotational moment of</td>
<td>104×10^{-6} [Nm²]</td>
</tr>
<tr>
<td>g</td>
<td>Acceleration due to gravity</td>
<td>9.81 [ms⁻²]</td>
</tr>
<tr>
<td>b</td>
<td>Center of propeller distance to center of</td>
<td>0.24 [m]</td>
</tr>
<tr>
<td>d</td>
<td>Drag factor</td>
<td>5.42×10^{-6} [Ns²]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.1×10^{-6} [Ns²]</td>
</tr>
</tbody>
</table>

where ψ is the roll angle, θ is the pitch angle, ψ is the yaw angle, and the faulty inputs U_1^f, U_2^f, U_3^f, U_4^f, Ω_f are defined as follows:

$$
U_1^f = b \left(f_1^2 \Omega_1^2 + f_2^2 \Omega_2^2 + f_3^2 \Omega_3^2 + f_4^2 \Omega_4^2 \right), \tag{7}
$$

$$
U_2^f = b \left(f_1^2 \Omega_1^2 - f_2^2 \Omega_2^2 \right), \tag{8}
$$

$$
U_3^f = b \left(f_1^2 \Omega_1^2 - f_3^2 \Omega_3^2 \right), \tag{9}
$$

$$
U_4^f = d \left(f_1^2 \Omega_1^2 + f_2^2 \Omega_2^2 - f_1^2 \Omega_1^2 - f_2^2 \Omega_2^2 \right), \tag{10}
$$

where f_i and Ω_i denote the i-th rotor fault magnitude and speed, respectively ($f_i = 1$ corresponds to the healthy rotor while $f_i = 0$ corresponds to its total loss). For a description of the system parameters, as well as the values used in the simulations that are taken from Brescia (2008); see Table 2.

In this paper, only the problem of attitude/altitude tracking control will be addressed. Hence, the dynamics of the system along the x_b and y_b axes, i.e., Eqs. (1) and (2), will be neglected.

2.1 Passive FTC reference model

In passive FTC, no information about the fault is available on-line. Hence, the same reference model used for the nominal case, and described by Rotondo et al. (2014), should be used as follows:

$$
\dot{\psi}_r = \psi_f, \tag{12}
$$

$$
\dot{\psi}_f = \Theta_f = \psi_f, \tag{13}
$$

$$
\dot{\theta}_r = \theta_f, \tag{14}
$$

$$
\dot{\theta}_f = \theta_f, \tag{15}
$$

$$
\dot{\psi}_r = \psi_f, \tag{16}
$$

$$
\dot{\psi}_f = \psi_f, \tag{17}
$$

$$
\dot{\theta}_r = \theta_f, \tag{18}
$$

$$
\dot{\theta}_f = \theta_f, \tag{19}
$$

where ψ_r is the reference roll angle, θ_r is the reference pitch angle, ψ_f is the reference yaw angle, z_r is the reference height, $v_{\psi_r}^0$, $v_{\theta_r}^0$, $v_{\psi_f}^0$, $v_{\theta_f}^0$ are the corresponding derivatives, and the reference inputs U_1^r, U_2^r, U_3^r, U_4^r, Ω_r are defined as follows:

$$
U_1^r = b \left(\Omega_1 \Omega_1 - \Omega_2 \Omega_2, + \Omega_3 \Omega_3 + \Omega_4 \Omega_4 \right), \tag{20}
$$

$$
U_2^r = b \left(\Omega_1 \Omega_4 - \Omega_2 \Omega_1, \right), \tag{21}
$$

$$
U_3^r = b \left(\Omega_3 \Omega_4 - \Omega_1 \Omega_3, \right), \tag{22}
$$

$$
U_4^r = d \left(\Omega_2 \Omega_2 + \Omega_4 \Omega_4 - \Omega_1 \Omega_1 - \Omega_3 \Omega_3 \right), \tag{23}
$$

$$
\Omega_r = \Omega_2 + \Omega_4 - \Omega_1 - \Omega_3, \tag{24}
$$

where Ω_{ir} denotes the i-th reference rotor speed.

2.2 Active FTC reference model

In active FTC, an estimate of the faults, denoted in the following by \hat{f}_i, is available. This information is added to the reference model (12–19) by changing U_1^r, U_2^r, U_3^r, U_4^r, Ω_r in (20–24) with the following values:

$$
U_1^r = b \left(\hat{f}_1 \Omega_1 + \hat{f}_2 \Omega_2, + \hat{f}_3 \Omega_3 + \hat{f}_4 \Omega_4 \right), \tag{25}
$$

$$
U_2^r = b \left(\hat{f}_1 \Omega_4 - \hat{f}_2 \Omega_2 \right), \tag{26}
$$

$$
U_3^r = b \left(\hat{f}_3 \Omega_4 - \hat{f}_2 \Omega_3 \right), \tag{27}
$$

$$
U_4^r = d \left(\hat{f}_2 \Omega_4 + \hat{f}_3 \Omega_4, \right), \tag{28}
$$

where \hat{f}_i denotes the i-th rotor fault estimation.

2.3 Passive FTC error model

By defining the tracking errors $e_1 \triangleq \psi_r - \psi, e_2 \triangleq \psi_f - \psi, e_3 \triangleq \theta_r - \theta, e_4 \triangleq \theta_f - \theta, e_5 \triangleq \psi_r - \psi, e_6 \triangleq \psi_f - \psi, e_7 \triangleq \theta_r - \theta$, the new inputs $o_i \triangleq \hat{f}_i \Omega_i - \Omega_i, i = 1, 2, 3, 4$, and rewriting the faults as $\Delta f_i = f_i - 1$, the error model for passive FTC of the quadrotor can be obtained from (22–28) and brought to a quasi-LPV representation following the non-linear embedding in the parameters approach proposed by Kwiatkowski et al. (2006) as follows:

$$
\dot{\epsilon}(t) = A(\theta(t)) \epsilon(t) + B(\theta(t)) o(t) + D(\theta(t)) \Delta f(t), \tag{30}
$$
where the vector of varying parameters is

$$
\vartheta(t) = \begin{bmatrix}
\vartheta_1(t) \\
\vartheta_2(t) \\
\vartheta_3(t) \\
\vartheta_4(t) \\
\vartheta_5(t) \\
\vartheta_6(t) \\
\vartheta_7(t) \\
\vartheta_8(t) \\
\vartheta_9(t) \\
\vartheta_{10}(t) \\
\vartheta_{11}(t) \\
\vartheta_{12}(t)
\end{bmatrix}
+ \begin{bmatrix}
\dot{\vartheta}(t) \\
\dot{\vartheta}(t)
\end{bmatrix},
$$

(31)

and the matrices $A(\vartheta(t))$, $B(\vartheta(t))$ and $D(\vartheta(t))$ are defined by (32), (33) and (34).

2.4. Active FTC error model.

The error model for active FTC of the quadrotor can be obtained from (3)–(19) and (25)–(29) considering $f_i = \bar{f}_i + \Delta f_i$, $i = 1, 2, 3, 4$, and brought to a quasi-LPV representation as follows (Kwiatkowski et al., 2006):

$$
\dot{e}(t) = A(\vartheta(t)) e(t) + B(\vartheta(t)) o(t),
$$

(35)

where the vector of varying parameters is

$$
\vartheta(t) = \begin{bmatrix}
\vartheta_1(t) \\
\vartheta_2(t) \\
\vartheta_3(t) \\
\vartheta_4(t) \\
\vartheta_5(t) \\
\vartheta_6(t) \\
\vartheta_7(t) \\
\vartheta_8(t) \\
\vartheta_9(t) \\
\vartheta_{10}(t) \\
\vartheta_{11}(t) \\
\vartheta_{12}(t)
\end{bmatrix}
+ \begin{bmatrix}
\dot{\vartheta}(t) \\
\dot{\vartheta}(t)
\end{bmatrix},
$$

(36)

the matrix $A(\vartheta(t))$ is defined as in (32), and the matrix $B(\vartheta(t))$ is defined by (37).

2.5. Hybrid FTC error model.

Fault estimation algorithms are affected by uncertainties that will cause a difference between the fault estimated value, given by the algorithm, and the real fault value. Among the causes of uncertainty, there are the presence of external disturbances, the mismatch between the real and modeled dynamics, due to unmodeled nonlinearities and errors in the calibration of the model parameters during the identification phase, and the noise affecting the measurements given by the sensors. The presence of these uncertainties in fault estimation, if not properly taken into account, can degrade the fault tolerant control system performances and give rise to undesired behaviours. This fact motivates a combination of the benefits of passive and active FTC strategies in order to obtain a hybrid passive/active FTC.

The error model for hybrid passive/active FTC of the quadrotor can be obtained from (3)–(19) and (25)–(29) considering $f_i = \bar{f}_i + \Delta f_i$, $i = 1, 2, 3, 4$. Then, the resulting quasi-LPV representation (Kwiatkowski et al., 2006) has the same structure of the passive FTC error model (20) with the vector of varying parameters made up by the one of active FTC error models (36) plus the following varying parameters:

$\vartheta(t) = \begin{bmatrix}
\vartheta_{13}(t) \\
\vartheta_{14}(t) \\
\vartheta_{15}(t) \\
\vartheta_{16}(t)
\end{bmatrix}
+ \begin{bmatrix}
\dot{\vartheta}(t) \\
\dot{\vartheta}(t) \\
\dot{\vartheta}(t) \\
\dot{\vartheta}(t)
\end{bmatrix},
$$

(38)

where the matrix $A(\vartheta(t))$ is defined by (32), the matrix $B(\vartheta(t))$ is defined by (37), and the matrix $D(\vartheta(t))$ is defined by (39).

3. Robust LPV framework

In this paper, a framework based on a combination of robust and LPV polytopic designs is proposed. In this framework, the variation in the state matrix is due to the vector of varying parameters ϑ, whose measurement or estimate is assumed to be available, together with some bounded uncertainties. The nominal LPV model is used to generate a polytope described by its vertices. Later, the model uncertainties are taken into account generating more polytopes, one for each vertex of the nominal polytope. The robust LPV polytopic design problem involves obtaining a controller scheduled by $\vartheta(t)$ as a combination of vertex controllers, each of which is designed to satisfy some LMI conditions at all vertices of the vertex polytope. Under some assumptions, the final result will be an LPV controller scheduled by ϑ that is robust against bounded uncertainties.

In particular, consider a continuous-time uncertain LPV system as in (30), where $e(t) \in \mathbb{R}^n_o$ is the state, $o(t) \in \mathbb{R}^{n_o}$ is the control input, $\Delta f(t) \in \mathbb{R}^{n_f}$ is a vector of exogenous inputs, $\vartheta(t) \in \Theta \subset \mathbb{R}^n_\Theta$ is the vector of varying parameters, and $A(\vartheta(t))$, B (assumed to be constant), $D(\vartheta(t))$ are matrices of appropriate
\[
A(\cdot) = \begin{pmatrix}
0 & 1 & 0 & 0 & (I_y - I_z) & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \varphi_5 (I_y - I_z) & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \varphi_2 (I_y - I_z) & 0 & 0 & 0 \\
0 & \varphi_3 (I_z - I_y) & 0 & 0 & 0 & \varphi_1 (I_z - I_y) & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & \varphi_2 (I_z - I_y) & 0 & (I_z - I_y) & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{pmatrix},
\]

(32)

\[
B(\cdot) = \begin{pmatrix}
\frac{J_{TP}}{I_x} \varphi_2 & -\frac{J_{TP}}{I_x} \varphi_2 & -\frac{J_{TP}}{I_y} \varphi_1 & \frac{J_{TP}}{I_y} \varphi_1 & \frac{J_{TP}}{I_y} \varphi_1 & -\frac{J_{TP}}{I_y} \varphi_1 & 0 & 0 & 0 \\
0 & \frac{J_{TP}}{I_x} \varphi_2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-\frac{J_{TP}}{I_y} \varphi_1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{J_{TP}}{I_x} \varphi_2 & 0 & 0 & 0 & 0 & 0 & 0 \\
b \frac{b}{m} \varphi_5 \varphi_{12} & b \frac{b}{m} \varphi_7 \varphi_{12} & b \frac{b}{m} \varphi_9 \varphi_{12} & 0 & 0 & 0 \\
\end{pmatrix},
\]

(33)

\[
D(\cdot) = \begin{pmatrix}
0 & 0 & 0 & 0 & 0 & 0 \\
-\frac{J_{TP}}{I_x} \varphi_5 & 0 & 0 & 0 & 0 & 0 \\
\frac{J_{TP}}{I_x} \varphi_5 + \frac{lb (2 + \Delta f)}{I_y} \varphi_4 & 0 & 0 & 0 & 0 & 0 \\
\frac{d (2 + \Delta f)}{I_z} \varphi_4 & 0 & 0 & 0 & 0 & 0 \\
-b \frac{b (2 + \Delta f)}{m} \varphi_4 \varphi_{12} & 0 & 0 & 0 & 0 & 0 \\
\frac{J_{TP}}{I_x} \varphi_7 + \frac{lb (2 + \Delta f_2)}{I_x} \varphi_6 & 0 & 0 & 0 & 0 & 0 \\
\frac{J_{TP}}{I_y} \varphi_7 & 0 & 0 & 0 & 0 & 0 \\
\frac{d (2 + \Delta f_2)}{I_z} \varphi_6 & 0 & 0 & 0 & 0 & 0 \\
-b \frac{b (2 + \Delta f_2)}{m} \varphi_6 \varphi_{12} & 0 & 0 & 0 & 0 & 0 \\
\frac{J_{TP}}{I_x} \varphi_9 & 0 & 0 & 0 & 0 & 0 \\
\frac{J_{TP}}{I_y} \varphi_9 & 0 & 0 & 0 & 0 & 0 \\
\frac{d (2 + \Delta f_3)}{I_z} \varphi_8 & 0 & 0 & 0 & 0 & 0 \\
-b \frac{b (2 + \Delta f_3)}{m} \varphi_8 \varphi_{12} & 0 & 0 & 0 & 0 & 0 \\
\frac{J_{TP}}{I_x} \varphi_{11} - \frac{lb (2 + \Delta f_4)}{I_x} \varphi_{10} & 0 & 0 & 0 & 0 & 0 \\
\frac{J_{TP}}{I_y} \varphi_{11} & 0 & 0 & 0 & 0 & 0 \\
\frac{d (2 + \Delta f_4)}{I_z} \varphi_{10} & 0 & 0 & 0 & 0 & 0 \\
-b \frac{b (2 + \Delta f_4)}{m} \varphi_{10} \varphi_{12} & 0 & 0 & 0 & 0 & 0 \\
\end{pmatrix},
\]

(34)
dimensions. Moreover, consider the additional algebraic equation

$$h(t) = C(\vartheta(t))e(t) + Eo(t) + F(\vartheta(t))\Delta f(t)$$ \hspace{1cm} (40)

where $h \in \mathbb{R}^{n_h}$ is a vector of output signals related to the H_∞ performance of the control system, and $C(\vartheta(t))$, E, $F(\vartheta(t))$ are matrices of appropriate dimensions. The system state-space matrices take values inside a polytope as follows:

$$
\begin{pmatrix}
A(\vartheta(t))

C(\vartheta(t))

D(\vartheta(t))

F(\vartheta(t))
\end{pmatrix} = \sum_{i=1}^{N} \alpha_i(\vartheta(t)) \begin{pmatrix}
A_i

C_i

D_i

F_i
\end{pmatrix},
$$

with

$$
\sum_{i=1}^{N} \alpha_i(\vartheta(t)) = 1, \quad \alpha_i(\vartheta(t)) \geq 0,
$$

\forall i = 1, \ldots, N, \quad \vartheta \in \Theta. \hspace{1cm} (41)

The matrices A_i, C_i, D_i, F_i denote the vertices of $A(\vartheta(t))$, $C(\vartheta(t))$, $D(\vartheta(t))$, $F(\vartheta(t))$ at the i-th vertex of the polytope. Each of these matrices, together with B and E, is uncertain, with an uncertainty that can be described as well in a polytopic way by M LTI systems as follows:

$$
\begin{pmatrix}
A_i

B_i

C_i

D_i

E_i

F_i
\end{pmatrix} = \sum_{j=1}^{M} \eta_{ij} \begin{pmatrix}
A_{ij}

B_{ij}

C_{ij}

D_{ij}

E_{ij}

F_{ij}
\end{pmatrix},
$$

with

$$
\sum_{j=1}^{M} \eta_{ij} = 1, \quad \eta_{ij} \geq 0,
$$

\forall i = 1, \ldots, N, \quad j = 1, \ldots, M. \hspace{1cm} (42)

The goal is to compute a polytopic LPV state-feedback control law:

$$o(t) = K(\vartheta(t))e(t) + \sum_{i=1}^{N} \alpha_i(\vartheta(t)) K_i e(t)$$ \hspace{1cm} (43)

that meets an H_∞ performance constraint and a regional pole placement constraint on the closed-loop behaviour. These specifications must be satisfied in the robust LPV sense, that is, for each possible value that the parameter ϑ and the uncertain matrices A, F in (30) and (40) can take. In order to achieve this goal, the following theorem, namely, an extension of the results obtained by Chilali and Gahinet (1996), is used.

Theorem 1. Let \mathcal{D} be an LMI region:

$$\mathcal{D} = \{ z \in \mathbb{C} : f_\mathcal{D}(z) < 0 \},$$

with the characteristic function

$$f_\mathcal{D}(z) = \alpha + z\beta + z^T \gamma,$$

and $\gamma > 0$ being an upper bound on the closed-loop H_∞ performance. Assume that there exist a single Lyapunov matrix $X = X^T > 0$ and N matrices Γ_i such that the following system of LMIs is feasible:

$$\left[\alpha_{kl} X + \beta_{kl} U_{ij}(X, \Gamma_i) + \beta_{lk} (X, \Gamma_i^T) \right]_{k,l \in [1,m]} < 0, \hspace{1cm} (48)$$

$$\left(\begin{array}{c}
U_{ij}(X, \Gamma_i) + U_{ij}(X, \Gamma_i)^T \\
F_{ij}
\end{array} \right) = \left(\begin{array}{c}
D_{ij} \\
V_{ij}(X, \Gamma_i)
\end{array} \right) < 0, \hspace{1cm} (49)$$

with

$$U_{ij}(X, \Gamma_i) = A_{ij} + B_{ij} \Gamma_i,$$

2Notice that, following Ghersin and Sanchez-Peña (2002) and with a little abuse of language, the poles of an LPV system are defined as the set of all the poles of the LTI systems obtained by freezing $\vartheta(t)$ to all its possible values $\vartheta \in \Theta$.

$D(\cdot) = \begin{pmatrix} 0 & 0 & 0 \\ J_{TP} \vartheta_4 & 0 & J_{TP} \vartheta_5 + lb (2\hat{f}_2 + \Delta f_2) \vartheta_{18} \\ I_y & 0 & I_y \\ J_{TP} \vartheta_4 + lb (2\hat{f}_1 + \Delta f_1) \vartheta_{17} & d (2\hat{f}_1 + \Delta f_1) \vartheta_{17} & -J_{TP} \vartheta_{18} \\ I_y & 0 & I_y \\ b (2\hat{f}_1 + \Delta f_1) \vartheta_{16} \vartheta_{17} & -b (2\hat{f}_1 + \Delta f_1) \vartheta_{16} \vartheta_{18} & -d (2\hat{f}_2 + \Delta f_2) \vartheta_{18} \\ I_y & 0 & I_y \\ J_{TP} \vartheta_6 & 0 & J_{TP} \vartheta_7 + lb (2\hat{f}_4 + \Delta f_4) \vartheta_{20} \\ I_y & 0 & I_y \\ b (2\hat{f}_3 + \Delta f_3) \vartheta_{19} & d (2\hat{f}_3 + \Delta f_3) \vartheta_{19} & -b (2\hat{f}_4 + \Delta f_4) \vartheta_{16} \vartheta_{20} \\ I_y & 0 & I_y \end{pmatrix}$

Then, if (X^*, Γ^*), $i = 1, \ldots, N$, is a solution of (43) and (44), the LPV state-feedback controller $(\ref{eq:lpv_controller})$, with vertex gains calculated as $K_i = \Gamma_i (X^*)^{-1}$, satisfies the pole placement in D constraint and the H_∞ performance bound γ in the robust LPV sense.

Proof. The pole placement in the D constraint and the H_∞ performance bound γ are satisfied if the vertex ϑ_i, $i = 1, \ldots, N$, hold, $\forall \vartheta \in \Theta$:

$$[\alpha_{ki} X + \beta_{ki} U (X, \Gamma (\vartheta(t))) + \beta_{ki} U (X, \Gamma (\vartheta(t)))^T]_{k,i \in [1,m]} < 0, \quad (52)$$

$$\begin{pmatrix} U (X, \Gamma (\vartheta(t))) + U (X, \Gamma (\vartheta(t)))^T \\ D (\vartheta(t))^T \\ V (X, \Gamma (\vartheta(t))) \\ D (\vartheta(t)) V (X, \Gamma (\vartheta(t)))^T \\ -I \\ F (\vartheta(t))^T \end{pmatrix} < 0, \quad (53)$$

$$V_{ij} (X, \Gamma_i) = C_{ij} + E_j \Gamma_i. \quad (51)$$

where

$$U (X, \Gamma (\vartheta(t))) = A (\vartheta(t)) X + B \Gamma (\vartheta(t)), \quad (54)$$

$$V (X, \Gamma (\vartheta(t))) = C (\vartheta(t)) X + E \Gamma (\vartheta(t)). \quad (55)$$

Taking into account (41)–(45), (52) can be rewritten as

$$\begin{pmatrix} \alpha_{ki} X + \beta_{ki} \left(\sum_{i=1}^{N} \alpha_i (\vartheta(t)) \sum_{j=1}^{M} \eta_{ij} A_{ij} X + \sum_{j=1}^{M} \eta_{ij} B_{ij} \sum_{i=1}^{N} \alpha_i (\vartheta(t)) \Gamma_i \right) + \beta_{ki} \left(\sum_{i=1}^{N} \alpha_i (\vartheta(t)) \sum_{j=1}^{M} \eta_{ij} X A_{ij}^T + \sum_{i=1}^{N} \alpha_i (\vartheta(t)) \Gamma_i^T \sum_{j=1}^{M} \eta_{ij} B_{ij}^T \right) \end{pmatrix} < 0, \quad (56)$$

which can be rewritten as

$$\sum_{i=1}^{N} \alpha_i (\vartheta(t)) \sum_{j=1}^{M} \eta_{ij} \Phi_{ij}^T < 0, \quad (57)$$

These conditions are a consequence of the theorems presented by Chilali and Gahinet (1996).
Robust quasi-LPV model reference FTC of a quadrotor UAV subject to actuator faults

with

$$\Phi^D_{ij} = \left[\alpha_{kl} X + \beta_{kl} \left(A_{ij} X + B_j \Gamma_i \right) \right]_{k,l \in [1,m]}$$ (58)

Similarly, $[53]$ can be brought to the following form:

$$\sum_{i=1}^N \alpha_i \left(\Phi(t) \right) + \sum_{j=1}^M \eta_j \Phi^\infty_{ij} < 0,$$ (59)

with

$$\Phi^\infty_{ij} = \left(\begin{array}{c} U_{ij} \left(X, \Gamma_i \right) + U_{ij} \left(X, \Gamma_i \right)^T \nonumber \\ V_{ij} \left(X, \Gamma_i \right) \nonumber \\ D_{ij} \nonumber \\ -F_{ij} \nonumber \\ -\gamma^2 I \end{array} \right).$$ (60)

From the basic property of matrices (Horn and Johnson, 1990) that any linear combination of positive (resp. negative) definite matrices with non-negative coefficients, whose sum is positive, is positive (resp. negative) definite, $[48]$ and $[49]$ are obtained, and this completes the proof.

Notice that the hypothesis of fixed matrices B and E has been done. In many cases, this is not true and a prefiltering of the input $o(t)$ is needed in order to obtain a new system with constant matrices B and E, as proposed by Apkarian et al. (1995). More specifically, defining a new control input $\tilde{o}(t)$ such that

$$\hat{x}_o(t) = A_o \left(\phi(t) \right) x_o(t) + B_o \tilde{o}(t),$$ (61)

$$o(t) = C_o x_o(t),$$ (62)

with $A_o \left(\phi(t) \right)$ being stable, the resulting LPV plant is described by

$$\begin{cases}
\dot{e}(t) & = \begin{pmatrix} A \left(\phi(t) \right) & B \left(\phi(t) \right) C_o & 0 \\ 0 & A_o & 0 \end{pmatrix} \\
\dot{x}_o(t) & + \begin{pmatrix} 0 & I_o \nonumber \\ 0 & B_o \nonumber \end{pmatrix} \tilde{o}(t) + \begin{pmatrix} e(t) \nonumber \\ x_o(t) \nonumber \end{pmatrix} \Delta f(t),
\end{cases}$$ (63)

$$h(t) = \begin{pmatrix} C \left(\phi(t) \right) & E \left(\phi(t) \right) C_o \end{pmatrix} \begin{pmatrix} e(t) \\ x_o(t) \end{pmatrix} + F \left(\phi(t) \right) \Delta f(t).$$ (64)

4. Reference inputs calculation for trajectory tracking

To make the quadrotor track a desired trajectory, proper values of Ω_{1r}, Ω_{2r}, Ω_{3r}, Ω_{4r} should be fed to the reference model, such that its state equals the one corresponding to the desired trajectory.

Here, for illustrative purposes, the case of sinusoidal trajectories is considered as follows

$$\phi_{r}(t) = \Phi \sin \left(\frac{2\pi t}{N_\phi} \right),$$ (65)

$$\theta_{r}(t) = \Theta \sin \left(\frac{2\pi t}{N_\theta} \right),$$ (66)

$$\psi_{r}(t) = \Psi \sin \left(\frac{2\pi t}{N_\psi} \right),$$ (67)

$$\zeta_{r}(t) = Z \sin \left(\frac{2\pi t}{N_z} \right),$$ (68)

where Φ, Θ, Ψ, Z are the amplitudes, and N_ϕ, N_θ, N_ψ, N_z are the periods. Taking the derivatives of $[65]$–$[68]$ and considering $[13]$, $[14]$, $[16]$, $[18]$, respectively, the following is obtained:

$$\dot{\phi}_{r}(t) = \dot{\phi}_{r}(t) = \Phi \cos \left(\frac{2\pi t}{N_\phi} \right) \frac{2\pi t}{N_\phi},$$ (69)

$$\dot{\theta}_{r}(t) = \dot{\theta}_{r}(t) = \Theta \cos \left(\frac{2\pi t}{N_\theta} \right) \frac{2\pi t}{N_\theta},$$ (70)

$$\dot{\psi}_{r}(t) = \dot{\psi}_{r}(t) = \Psi \cos \left(\frac{2\pi t}{N_\psi} \right) \frac{2\pi t}{N_\psi},$$ (71)

$$\dot{\zeta}_{r}(t) = \dot{\zeta}_{r}(t) = Z \cos \left(\frac{2\pi t}{N_z} \right) \frac{2\pi t}{N_z},$$ (72)

Then, another differentiation of $[69]$–$[72]$ leads to

$$\ddot{\phi}_{r}(t) = \ddot{\phi}_{r}(t) = -\Phi \left(\frac{2\pi}{N_\phi} \right) \sin \left(\frac{2\pi t}{N_\phi} \right),$$ (73)

$$\ddot{\theta}_{r}(t) = \ddot{\theta}_{r}(t) = -\Theta \left(\frac{2\pi}{N_\theta} \right) \sin \left(\frac{2\pi t}{N_\theta} \right),$$ (74)

$$\ddot{\psi}_{r}(t) = \ddot{\psi}_{r}(t) = -\Psi \left(\frac{2\pi}{N_\psi} \right) \sin \left(\frac{2\pi t}{N_\psi} \right),$$ (75)

$$\ddot{\zeta}_{r}(t) = \ddot{\zeta}_{r}(t) = -Z \left(\frac{2\pi}{N_z} \right) \sin \left(\frac{2\pi t}{N_z} \right),$$ (76)

$$\ddot{\phi}_r(t) = \frac{2\pi}{N_\phi} \sin \left(\frac{2\pi t}{N_\phi} \right) \frac{2\pi}{N_\phi} \frac{2\pi t}{N_\phi},$$ (77)
Adding the states \(x \) is considered, i.e., (20)–(24), the changes et al. FTC strategies. As already discussed in Section 3, since \(\tilde{B} \) the input matrix and \(\tilde{I} \) unknown variables such that \(\tilde{b} - \tilde{b} \),

\[
\phi \cos \left(\frac{2\pi t}{N_\phi} \right) + \dot{\phi} \cos \left(\frac{2\pi t}{N_\phi} \right) \frac{2\pi I_2 - I_3}{N_\phi} + \frac{J_{r,p}}{I_g} \left(f_2 \Omega_{2r} + f_4 \Omega_{4r} - f_1 \Omega_1 + f_3 \Omega_3 \right) + \frac{J_b}{I_g} \left[f_2^2 (\Omega_{3r} - o_3) \Omega_{3r} - f_1^2 (\Omega_1 - o_1) \Omega_1 \right] + \Theta \left(\frac{2\pi}{N_\gamma} \right)^2 \sin \left(\frac{2\pi t}{N_\gamma} \right) = 0.
\]

(78)

\[
\dot{\phi} \left(\frac{2\pi t}{N_\phi} \right) + \dot{\phi} \cos \left(\frac{2\pi t}{N_\phi} \right) \frac{2\pi I_2 - I_3}{N_\phi} + \frac{d}{I_z} \left[f_2^2 (\Omega_{2r} - o_2) \Omega_{2r} + f_4^2 (\Omega_{4r} - o_4) \Omega_{4r} \right] - \frac{d}{I_z} \left[f_2^2 (\Omega_{3r} - o_3) \Omega_{3r} + f_4^2 (\Omega_{4r} - o_4) \Omega_{4r} \right] - \Psi \left(\frac{2\pi}{N_\psi} \right)^2 \sin \left(\frac{2\pi t}{N_\psi} \right) = 0.
\]

(79)

where \(\tilde{\phi}_i(t), i = 1, \ldots, 4 \) are the new inputs, and \(\omega_1 \) has been chosen as \(\omega_1 = 100, i = 1, \ldots, 4 \).

The polytopic approximation \[\text{(81)}\] of the quadrotor quasi-LPV passive FTC error model \(\text{(80)}–\text{(84)} \) was obtained by considering

\[
\vartheta_1 \in \left[\min(\phi), \max(\phi) \right] = [-0.25, 0.25],
\]

\[
\vartheta_2 \in \left[\min(\theta), \max(\theta) \right] = [-0.25, 0.25],
\]

\[
\vartheta_3 \in \left[\min(\psi), \max(\psi) \right] = [-0.25, 0.25],
\]

\[
\left(\vartheta_{2i+2} \vartheta_{2i+3} \right) \in \text{Tr} \left\{ \begin{pmatrix} \min(\Omega_1) \min(\Omega_1) \\ \min(\Omega_1) \max(\Omega_1) \max(\Omega_1) \end{pmatrix} \right\},
\]

(85)

with \(\min(\Omega_1) = 100, \max(\Omega_1) = 500, i = 1, 2, 3, 4 \), and where \('T' \) denotes a triangular polytopic approximation, which was preferred to a bounding box one in order to reduce the conservativeness. Finally, \(\vartheta_8 \in [0.5, 1] \), which corresponds to the interval of possible values of \(\vartheta_8 \) when \(\phi \in [-\pi/4, \pi/4] \) and \(\theta \in [-\pi/4, \pi/4] \).

The polytopic approximation \[\text{(81)}\] of the quadrotor quasi-LPV active FTC error model \(\text{(86)}–\text{(87)} \) was obtained by considering

\[
\vartheta_1 \in \left[\min(\phi), \max(\phi) \right] = [-0.25, 0.25],
\]

\[
\vartheta_2 \in \left[\min(\theta), \max(\theta) \right] = [-0.25, 0.25],
\]

\[
\vartheta_3 \in \left[\min(\psi), \max(\psi) \right] = [-0.25, 0.25],
\]

\[
\vartheta_{i+3} \in \left[\min(\Omega_1), \max(\Omega_1) \right] = [100, 500],
\]

\[
\left(\vartheta_{2i+6} \vartheta_{2i+7} \right) \in \text{Tr} \left\{ \begin{pmatrix} \min(f_i) \min(f_i) \\ \min(f_i) \ 1 \ 1 \ 1 \end{pmatrix} \right\},
\]

(88)

\[
\vartheta_{16} \in [0.5, 1].
\]

(89)

Similar considerations were applied to the quadrotor quasi-LPV hybrid FTC error model for obtaining its polytopic approximation. In particular, the results presented hereafter were obtained considering \(\min(f_i) = 0.7 \).

The passive/active/hybrid controllers were designed using \[\text{(86)}–\text{(87)} \], to assure stability and pole clustering in:

\[
\mathcal{D} = \{ z \in \mathbb{C} : \Re(z) < -0.5, \Re(z)^2 + \Im(z)^2 < 10000, \tan(0.3)\Re(z) < -|\Im(z)| \}
\]

(92)

5. Results

The results presented in this section compare the proposed FTC strategies. As already discussed in Section 3 since the input matrix \(B \) is not constant, a preprocessing of the inputs is needed to obtain a constant input matrix \(\tilde{B} \).

Adding the states \(x_{o_1}, x_{o_2}, x_{o_3} \) and \(x_{o_4} \) to the error vector such that \(\tilde{o}_i(t) = x_{o_i}(t) \), this corresponds to the case \(C_o = I \) in \[\text{(62)}\], with the state equation \[\text{(61)}\] given by

\[
\dot{x}_{o_i}(t) = -\omega_{i} x_{o_i}(t) + \omega_i \tilde{o}_i(t),
\]

(81)
and an \mathcal{H}_∞ performance bound $\gamma = 1000$, and considering $h(t) = [\phi, \theta, \psi, z]^T$ in (40).

It must be remarked that, due to the exponential growth of the vertices with the number of faults taken into consideration ($2^9 \times 3^4$ vertices in the passive and active FTC cases, $2^{8-i} \times 3^2$ in the hybrid FTC case, where i is the number of considered faults), the time needed to solve the LMIs grows exponentially, too. However, the strong calculating capacity available nowadays and the fact that the controller design is performed off-line and only the coefficients of the polytopic decomposition must be calculated on-line make this issue less critical.

The results shown in this paper refer to simulations which last 30 s, where the quadrotor is driven from the initial state:

$$
\phi(0) = \frac{\pi}{6}, \quad \theta(0) = \frac{\pi}{6}, \quad \psi(0) = \frac{\pi}{6}, \quad z(0) = 0,
\phi(0) = 0, \quad \theta(0) = 0, \quad \psi(0) = 0, \quad \dot{z}(0) = 0
$$

to the desired trajectory defined as in (77–80), with $\Phi = \Theta = \Psi = 0.1$, $Z = 0$, $N_\phi = N_\theta = N_\psi = N_z = 10$ s. The desired trajectory was generated by the reference model (17–19) starting from the initial reference state:

$$
\left(\phi_r(0), v^\phi_r(0), \theta_r(0), v^\theta_r(0), \psi_r(0), v^\psi_r(0), z_r(0), v^z_r(0)\right)^T = (0, 2\pi\Phi/N_\phi, 0, 2\pi\Theta/N_\theta, 0, 2\pi\Psi/N_\psi, 0, 2\pi Z/N_z)^T
$$

Figures 3–6 present a comparison between the responses obtained with a nominal controller and the ones obtained with the proposed passive FTC approach. A fault in the first actuator acts starting from the time instant $t = 15$ s. It can be seen that even a small fault, e.g., $f_1 = 0.9$, is enough to drive the system to instability if the nominal controller is used. On the other hand, passive FTC shows some tolerance capability since, for $f_1 = 0.8$ and $f_1 = 0.9$, the stability is preserved, although with a steady-state error due to the effect of the fault.

On the other hand, the proposed active FTC technique can achieve perfect fault tolerance as long as the fault is correctly estimated, as shown in Figs. 7–10 (black solid line), where a fault $f_1 = 0.7$ acting from $t = 15$ s is considered. However, as the uncertainty in fault estimation (in this work modeled as a uniformly bounded noise) increases, so does the error between the real trajectory and the reference one.

By applying the proposed hybrid FTC method, the overall performance can be improved, thus reducing the effect that the fault estimation error has on the closed-loop response, as shown in Figs. 11–14.

In order to quantify numerically the improvement brought by the FTC strategies considered, let us introduce ΔAdding an integral action to the controller could eliminate the steady-state error, although at the expense of worsening the dynamical transient performance of the closed-loop system.

the following performance measures:

$$
J_\phi = \frac{1}{1500} \sum_{k=1500}^{3000} \left(\phi_r \left(\frac{k}{100}\right) - \phi \left(\frac{k}{100}\right)\right)^2, \quad (93)
$$

$$
J_\theta = \frac{1}{1500} \sum_{k=1500}^{3000} \left(\theta_r \left(\frac{k}{100}\right) - \theta \left(\frac{k}{100}\right)\right)^2, \quad (94)
$$

$$
J_\psi = \frac{1}{1500} \sum_{k=1500}^{3000} \left(\psi_r \left(\frac{k}{100}\right) - \psi \left(\frac{k}{100}\right)\right)^2, \quad (95)
$$

$$
J_z = \frac{1}{1500} \sum_{k=1500}^{3000} \left(z_r \left(\frac{k}{100}\right) - z \left(\frac{k}{100}\right)\right)^2, \quad (96)
$$

$$
J = J_\phi + J_\theta + J_\psi + J_z. \quad (97)
$$

A comparison of the performance measures obtained in the different cases, as given in Table 3, shows the improvement brought by the proposed FTC strategies with respect to the nominal one, as well as the one brought by hybrid FTC with respect to the passive and active FTC strategies.
Fault/uncertainty

In this paper, a solution for FTC of a quadrotor UAV has been proposed. By defining two reference models, different error models suitable for FTC can be obtained. In particular, three kinds of strategies can be used: (i) passive FTC, where faults are dealt with as though as they were exogenous perturbations, (ii) active FTC, where the controller is scheduled by the fault estimation, and (iii) hybrid FTC, which combines the characteristics of passive and active FTC.

Controller design is performed within the robust LPV framework, where an LPV controller is designed to be scheduled by the vector of varying parameters and to be robust against bounded uncertainties, satisfying some conditions expressed as LMIs.

The results presented in the paper have shown the relevant features of the proposed FTC strategy, which is able to improve the performances under fault occurrence. In particular, whereas the passive FTC shows some limited tolerance capability, resulting in the appearance of steady-state errors due to the fault effect, the active FTC technique can achieve perfect fault tolerance as long as the fault is correctly estimated. However, as the uncertainty in fault estimation increases, so does the error between the real trajectory and the reference one. By applying the proposed hybrid FTC method, the overall performance can be improved, thus reducing the effect that the fault estimation error has on the closed-loop response. The introduction and comparison of some performance measures have allowed to numerically confirm such analysis.

Future research will be aimed at applying the proposed FTC strategy to a real set-up. This goal brings additional challenges, due to the presence of many sources of uncertainties that must be taken into account in order to enforce the robustness of the FTC strategy. Moreover, as remarked in the introduction, the inclusion of an FDI module can allow increasing the obtainable performance. Thus, further research will investigate FDI (as well as fault estimation) algorithms that can be successfully applied to quadrotor UAVs.
Robust quasi-LPV model reference FTC of a quadrotor UAV subject to actuator faults

Fig. 7. Roll angle response (active FTC without and with uncertainty, $f_1 = 0.7$).

Fig. 8. Pitch angle response (active FTC without and with uncertainty, $f_1 = 0.7$).

Fig. 9. Yaw angle response (active FTC without and with uncertainty, $f_1 = 0.7$).

Fig. 10. Height response (active FTC without and with uncertainty, $f_1 = 0.7$).

Acknowledgment

This work has been funded by the Spanish MINECO through the project CICIT SHERECS (ref. DPI2011-26243), by the European Commission through the contract i-Sense (ref. FP7-ICT-2009-6-270428), by AGAUR through the contracts FI-DGR 2013 (ref. 2013FI00218) and FI-DGR 2014 (ref. 2014FI_ B1 00172), and by the DGR of Generalitat de Catalunya (SAC group ref. 2014/SGR/374).

References

Fig. 11. Roll angle response (comparison between active FTC and hybrid FTC, $f_1 = 0.7$).

Fig. 12. Pitch angle response (comparison between active FTC and hybrid FTC, $f_1 = 0.7$).

Fig. 13. Yaw angle response (comparison between active FTC and hybrid FTC, $f_1 = 0.7$).

Fig. 14. Height response (comparison between active FTC and hybrid FTC, $f_1 = 0.7$).

Robust quasi-LPV model reference FTC of a quadrotor UAV subject to actuator faults

