Necessary and sufficient conditions for the positivity and reachability of fractional descriptor positive discrete-time linear systems are established. The minimum energy control problem for descriptor positive systems is formulated and solved. Sufficient conditions for the existence of a solution to the minimum energy control problem are given. A procedure for computation of optimal input sequences and a minimal value of the performance index is proposed and illustrated by a numerical example.
Faculty of Electrical Engineering, Białystok University of Technology, ul. Wiejska 45D, 15-351 Białystok, Poland
Bibliografia
Busłowicz, M. (2008). Stability of linear continuous time fractional order systems with delays of the retarded type, Bulletin of the Polish Academy of Sciences: Technical Sciences 56(4): 319-324.
Dzieliński, A. and Sierociuk, D. (2008). Stability of discrete fractional order state-space systems, Journal of Vibrations and Control 14(9/10): 1543-1556.
Dzieliński, A., Sierociuk, D. and Sarwas, G. (2009). Ultracapacitor parameters identification based on fractional order model, Proceedings of ECC'09, Budapest, Hungary, pp. 196-200.
Farina, L. and Rinaldi, S. (2000). Positive Linear Systems: Theory and Applications, J. Wiley, New York, NY.
Kaczorek, T. (1992). Linear Control Systems, Research Studies Press/J. Wiley, New York, NY.
Kaczorek, T. (2001). Positive 1D and 2D Systems, Springer-Verlag, London.
Kaczorek, T. (2008a). Fractional positive continuous-time systems and their reachability, International Journal of Applied Mathematics and Computer Science 18(2): 223-228, 10.2478/v10006-008-0020-0.
Kaczorek, T. (2008b). Practical stability of positive fractional discrete-time linear systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 56(4): 313-318.
Kaczorek, T. (2008c). Reachability and controllability to zero tests for standard and positive fractional discrete-time systems, Journal Européen des Systèmes Automatisés 42(6-8): 769-787.
Kaczorek, T. (2009). Asymptotic stability of positive fractional 2D linear systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 57(3): 289-292.
Kaczorek, T. (2011a). Controllability and observability of linear electrical circuits, Electrical Review 87(9a): 248-254.
Kaczorek, T. (2011b). Positivity and reachability of fractional electrical circuits, Acta Mechanica et Automatica 5(2): 42-51.
Kaczorek, T. (2011c). Positive linear systems consisting of n subsystems with different fractional orders, IEEE Transactions on Circuits and Systems 58(6): 1203-1210.
Kaczorek, T. (2011d). Checking of the positivity of descriptor linear systems by the use of the shuffle algorithm, Archives of Control Sciences 21(3): 287-298.
Kaczorek, T. (2012). Selected Problems of Fractional Systems Theory, Springer-Verlag, Berlin.
Kaczorek, T. (2013a). Minimum energy control of fractional positive continuous-time linear systems, MMAR Conference, Międzyzdroje, Poland, pp. 622-626.
Kaczorek, T. (2013b). Minimum energy control of descriptor positive discrete-time linear systems, COMPEL 33(2): 1-14.
Kaczorek, T. and Klamka, J. (1986). Minimum energy control of 2D linear systems with variable coefficients, International Journal of Control 44(3): 645-650.
Klamka J., (1976). Relative controllability and minimum energy control of linear systems with distributed delays in control, IEEE Transactions on Automatic Control 21(4): 594-595.
Klamka, J. (1983). Minimum energy control of 2D systems in Hilbert spaces, System Sciences 9(1-2): 33-42.
Klamka, J. (1991). Controllability of Dynamical Systems, Kluwer Academic Press, Dordrecht.
Klamka, J. (2010). Controllability and minimum energy control problem of fractional discrete-time systems, in D. Baleanu, Z.B. Guvenc and J.A. Tenreiro Machado (Eds.), New Trends in Nanotechnology and Fractional Calculus, Springer-Verlag, New York, NY, pp. 503-509.
Oldham, K.B. and Spanier, J. (1974). The Fractional Calculus, Academic Press, New York, NY.
Ostalczyk, P. (2008). Epitome of the Fractional Calculus: Theory and Its Applications in Automatics, Technical University of Łódź Press, Łódź, (in Polish).
Podlubny, I. (1999). Fractional Differential Equations, Academic Press, San Diego, CA.
Radwan, A.G., Soliman, A.M., Elwakil, A.S. and Sedeek, A. (2009). On the stability of linear systems with fractional-order elements, Chaos, Solitons and Fractals 40(5): 2317-2328.
Tenreiro Machado J.A., Ramiro Barbosa S., (2006). Functional dynamics in genetic algorithms, Workshop on Fractional Differentiation and Its Application, Porto, Portugal, Vol. 1, pp. 439-444.
Vinagre B.M., Monje C.A., Calderon A.J. (2002). Fractional order systems and fractional order control actions, IEEE CDC'02, Las Vegas, NV, USA, TW#2, Lecture 3.