PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 23 | 2 | 247-261
Tytuł artykułu

Bifurcation and control for a discrete-time prey-predator model with Holling-IV functional response

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The dynamics of a discrete-time predator-prey model with Holling-IV functional response are investigated. It is shown that the model undergoes a flip bifurcation, a Hopf bifurcation and a saddle-node bifurcation by using the center manifold theorem and bifurcation theory. Numerical simulations not only exhibit our results with the theoretical analysis, but also show the complex dynamical behaviors, such as the period-3, 6, 9, 12, 20, 63, 70, 112 orbits, a cascade of period-doubling bifurcations in period-2, 4, 8, 16, quasi-periodic orbits, an attracting invariant circle, an inverse period-doubling bifurcation from the period-32 orbit leading to chaos and a boundary crisis, a sudden onset of chaos and a sudden disappearance of the chaotic dynamics, attracting chaotic sets and non-attracting sets. We also observe that when the prey is in chaotic dynamics the predator can tend to extinction or to a stable equilibrium. Specifically, we stabilize the chaotic orbits at an unstable fixed point by using OGY chaotic control.
Rocznik
Tom
23
Numer
2
Strony
247-261
Opis fizyczny
Daty
wydano
2013
otrzymano
2012-04-13
poprawiono
2012-09-08
Twórcy
  • College of Mathematics and System Sciences, Xinjiang University, Urumqi 830046, People's Republic of China
autor
  • College of Mathematics and System Sciences, Xinjiang University, Urumqi 830046, People's Republic of China
autor
  • College of Mathematics and System Sciences, Xinjiang University, Urumqi 830046, People's Republic of China
  • State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, People's Republic of China
Bibliografia
  • Busłowicz, M. (2012). Robust stability of positive continuous-time linear systems with delays, International Journal of Applied Mathematics and Computer Science 20(4): 665-670, DOI: 10.2478/v10006-010-0049-8.
  • Busłowicz, M. and Ruszewski, A. (2012). Computer method for stability analysis of the Roesser type model of 2D continous-discrete linear systems, International Journal of Applied Mathematics and Computer Science 22(2): 401-408, DOI: 10.2478/v10006-012-0030-9.
  • Duda, J. (2012). A Lyapunov functional for a system with a time-varying delay, International Journal of Applied Mathematics and Computer Science 22(2): 327-337, DOI: 10.2478/v10006-012-0024-7.
  • Fan, Y. and Li, W. (2004). Permanence for a delayed discrete ratio-dependent predator-prey system with Holling type functional response, Journal of Mathematical Analysis and Applications 299(2): 357-374.
  • Freedman, H.I. (1976). Graphical stability, enrichment, and pest control by a natural enemy, Mathematical Biosciences 31(3-4): 207-225.
  • Freedman, H.I. (1980). Deterministic Mathematical Models in Population Ecologys, Marcel Dekker, New York, NY.
  • Grebogi, C., Ott, E. and Yorke, J.A. (1983). Crises, sudden changes in chaotic attractors, and transient chaos, Physica D: Nonlinear Phenomena 7(1-3): 181-200.
  • Grebogi, C., Ott, E. and Yorke, J.A. (1986). Critical exponent of chaotic transients in nonlinear dynamical systems, Physical Review Letters 57(11): 1284-1287.
  • Grebogi, C., Ott, E., Romeiras, F. and Yorke, J.A. (1987). Critical exponents for crisis-induced intermittency, Physical Review A 36(11): 5365-5380.
  • Guckenheimer, J. and Holmes, P. (1983). Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag, New York, NY.
  • Hainzl, J. (1988). Stability and Hopf bifurcation in a predator-prey system with several parameters, SIAM Journal on Applied Mathematics 48(1): 170-190.
  • Harrison, G.W. (1986). Multiple stable equilibria in a predator-prey system, Bulletin of Mathematical Biology 48(2): 137-148.
  • He, Z. and Lai, X. (2011). Bifurcation and chaotic behavior of a discrete-time predator-prey system, Nonlinear Analysis: Real World Applications 12(1): 403-417.
  • Holling, C.S. (1965). The functional response of predators to prey density and its role in mimicry and population regulation, Memoirs of the Entomological Society of Canada 97(45): 1-60.
  • Hsu, S.B. (1978). The application of the Poincare-transform to the Lotka-Volterra model, Journal of Mathematical Biology 6(1): 67-73.
  • Hu, Z., Teng, Z. and Zhang, L. (2011). Stability and bifurcation analysis of a discrete predator-prey model with nonmonotonic functional response, Nonlinear Analysis: Real World Applications 12(4): 2356-2377.
  • Huang, J. and Xiao, D. (2004). Analyses of bifurcations and stability in a predator-prey system with Holling type-IV functional response, Acta Mathematicae Applicatae Sinica 20(1): 167-178.
  • Jing, Z. (1989). Local and global bifurcations and applications in a predator-prey system with several parameters, Systems Science and Mathematical Sciences 2(4): 337-352.
  • Jing, Z. , Chang, Y. and Guo, B. (2004). Bifurcation and chaos in discrete FitzHugh-Nagumo system, Chaos, Solitons & Fractals 21(3): 701-720.
  • Jing, Z. and Yang, J. (2006). Bifurcation and chaos in discrete-time predator-prey system, Chaos, Solitons & Fractals 27(1): 259-277.
  • Kazarinoff, N.D. and Van Den Driessche, P. (1978). A model predator-prey system with functional response, Mathematical Biosciences 39(1-2): 125-134.
  • Kuznetsov, Y.A. (1998). Elements of Applied Bifurcation Theory, Springer-Verlag, Berlin.
  • Liu, X. and Xiao, D. (2007). Complex dynamic behaviors of a discrete-time predator-prey system, Chaos, Solitons & Fractals 32(1): 80-94.
  • Liu, W., Li, D. and Yao, T. (2010). Qualitative analysis of Holling IV predator-prey system with double density retrie, Natural Sciences Journal of Harbin Normal University 26(6): 8-12, (in Chinese).
  • Ott, E., Grebogi, C. and Yorke, J.A. (1990). Controlling chaos, Physical Review Letters 64(11): 1196-1199.
  • Raja, R., Sakthivel, R., Anthoni, S.M. and Kim, H. (2011). Stability of impulsive Hopfield neural networks with Markovian switching and time-varying delays, International Journal of Applied Mathematics and Computer Science 21(1): 127-135, DOI: 10.2478/v10006-011-0009-y.
  • Robinson, C. (1999). Dynamical Systems, Stability, Symbolic Dynamics and Chaos, 2nd Edn., CRC Press, Boca Raton, FL/London/New York, NY/Washington, DC.
  • Ruan, S. and Xiao, D. (2001). Global analysis in a predator-prey system with nonmonotonic functional response, SIAM Journal on Applied Mathematics 61(4): 1445-1472.
  • Scholl, E. and Schuster, H.G. (2008). Handbook of Chaos Control, Wiley-VCH, Weinheim.
  • Tong, Y., Liu, Z. and Wang, Y. (2012). Existence of period solutions for a predator-prey system with sparse effect and functional response on time scales, Communications in Nonlinear Science and Numerical Simulation 17(8): 3360-3366.
  • Wang, Y., Jing, Z. and Chan, K. (1999). Multiple limit cycles and global stability in predator-prey model, Acta Mathematicae Applicatae Sinica 15(2): 206-219.
  • Wiggins, S. (1990). Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer-Verlag, Berlin.
  • Wolkowicz, G.S.K. (1988). Bifurcation analysis of a predator-prey system involving group defence, SIAM Journal on Applied Mathematics 48(3): 592-606.
  • Xu, C., Liao, M. and He, X. (2011). Stability and Hopf bifurcation analysis for a Lotka-Volterra predator-prey model with two delays, International Journal of Applied Mathematics and Computer Science 21(1): 97-107, DOI: 10.2478/v10006-011-0007-0.
  • Zhang, Q., Yang, L. and Liao, D. (2011). Existence and exponential stability of a periodic solution for fuzzy cellar neural networks with time-varying delays, International Journal of Applied Mathematics and Computer Science 21(4): 649-658, DOI: 10.2478/v10006-011-0051-9.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-amcv23z2p247bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.