Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 22 | 3 | 533-538

Tytuł artykułu

Equivalent descriptions of a discrete-time fractional-order linear system and its stability domains

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Two description forms of a linear fractional-order discrete system are considered. The first one is by a fractional-order difference equation, whereas the second by a fractional-order state-space equation. In relation to the two above-mentioned description forms, stability domains are evaluated. Several simulations of stable, marginally stable and unstable unit step responses of fractional-order systems due to different values of system parameters are presented.

Rocznik

Tom

22

Numer

3

Strony

533-538

Opis fizyczny

Daty

wydano
2012
otrzymano
2011-04-19
poprawiono
2011-12-16

Twórcy

  • Institute of Applied Computer Science, Łódź University of Technology, ul. Stefanowskiego 18/22, 90-924 Łódź, Poland

Bibliografia

  • Dzieliński, A. and Sierociuk, D. (2008). Stability of discrete fractional order state-space systems, Journal of Vibration and Control 14(9/10): 1543-1556.
  • Guermah, S., Djennoune, S. and Bettayeb, M. (2010). A new approach for stability analysis of linear discrete-time fractional-order systems, in D. Baleanu, Z. Güvenç and J.T. Machado (Eds.), New Trends in Nanotechnology and Fractional Calculus Applications, Springer, Dodrecht, pp. 151-162.
  • Kaczorek, T. (2011). Selected Problems of Fractional Systems Theory, Springer-Verlag, Berlin.
  • Kailath, S. (1980). Linear Systems, Prentice-Hall, Englewood Cliffs, NJ.
  • Matignon, D. (1996). Stability results for fractional differential eqations with applications to control processing, Computational Engineering in Systems and Application Multiconference, Lille, France, pp. 963-968.
  • Miller, K. and Ross, B. (1993). An Introduction to Fractional Calculus and Fractional Differential Equations, Wiley, New York, NY.
  • Ogata, K. (1987). Discrete Control Systems, Prentice-Hall, Englewood Cliffs, NJ.
  • Oldham, K. and Spanier, J. (1974). The Fractional Calculus, Academic Press, New York, NY.
  • Ostalczyk, P. (2008). Epitome of Fractional Calculus: Theory and Its Applications in Automatics, Technical University of Łódź Press, Łódź, (in Polish).
  • Oustaloup, A. (1991). La commande CRONE, Éditions Hermès, Paris.
  • Oustaloup, A. (1995). La derivation non entière: thèorie, syntheses et applications, Éditions Hermès, Paris.
  • Oustaloup, A. (1999). La commande crone: du scalaire au multivariable, Éditions Hermès, Paris.
  • Podlubny, I. (1999). Fractional Differential Equations, Academic Press, New York, NY.
  • Samko, A. Kilbas, A. and Marichev, O. (1993). Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, London.
  • Valério, D. and Costa, S. (2006). Tuning of fractional PID controllers with Ziegler-Nichols-type rules, Signal Processing 86(10): 2771-2784.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.bwnjournal-article-amcv22z3p533bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.