We analyse the resilience of the quantum search algorithm in the presence of quantum noise modelled as trace preserving completely positive maps. We study the influence of noise on the computational complexity of the quantum search algorithm. We show that it is only for small amounts of noise that the quantum search algorithm is still more efficient than any classical algorithm.
Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, ul. Bałtycka 5, 44-100 Gliwice, Poland
Bibliografia
Azuma, H. (2005). Higher-order perturbation theory for decoherence in Grover's algorithm, Physical Review A 72(4): 42305.
Barnes, J.P. and Warren, W.S. (1999). Decoherence and programmable quantum computation, Physical Review A 60(6): 4363-4374.
Bengtsson, I. and Życzkowski, K. (2006). Geometry of Quantum States. An Introduction to Quantum Entanglement, Cambridge University Press, Cambridge.
Bouwmeester, D., Ekert, A. and Zeilinger, A. (2000). The Physics of Quantum Information: Quantum Cryptography, Quantum Teleportation, Quantum Computation, Physics and Astronomy Online Library, Springer, http://www.springer.com/physics/quantum +physics/book/978-3-540-66778-0.
Bugajski, S. (2001). Quantum search, Archiwum Informatyki Teoretycznej i Stosowanej 13(2): 143-150.
Gawron, P., Klamka, J., Miszczak, J.A. and Winiarczyk, R. (2010). Extending scientific computing system with structural quantum programming capabilities, Bulletin of the Polish Academy of Sciences: Technical Sciences 58(1): 77-88.
Grover, L. (1996). A fast quantum mechanical algorithm for database search, Proceedings of the 28th Annual ACM Symposium on the Theory of Computation, Philadelphia, PA, USA, pp. 212-219.
Grover, L.K. (1997). Quantum mechanics helps in searching for a needle in a haystack, Physical Review Letters 79(2): 325.
Grover, L.K. (1998). A framework for fast quantum mechanical algorithms, Proceedings of the 30th Annual ACM Symposium on Theory of Computing (STOC), Dallas, TX, USA, pp. 53-62.
Konstadakis, C. and Ellinas, D. (2001). Noisy Grover's Searching Algorithm, OSA Technical Digest Series, Optical Society of America, Rochester/New York, NY.
Long, G.L., Li, Y.S., Zhang, W.L. and Tu, C.C. (2000). Dominant gate imperfection in Grover's quantum search algorithm, Physical Review A 61(4): 42305.
Nielsen, M. and Chuang, I. (1999). Quantum Computation and Quantum Information, Cambridge University Press, Cambridge.
Pablo-Norman, B. and Ruiz-Altaba, M. (1999). Noise in Grover's quantum search algorithm, Physical Review A 61(1): 12301.
Salas, P.J. (2008). Noise effect on Grover algorithm, The European Physical Journal D 46(2): 365-373.
Shapira, D., Mozes, S. and Biham, O. (2003). Effect of unitary noise on Grover's quantum search algorithm, Physical Review A 67(4): 42301.
Shenvi, N., Brown, K.R. and Whaley, K.B. (2003). Effects of a random noisy oracle on search algorithm complexity, Physical Review A 68(5): 52313.
Zhirov, O.V. and Shepelyansky, D.L. (2006). Dissipative decoherence in the Grover algorithm, The European Physical Journal D 38(2): 405-408.