PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 22 | 2 | 423-435
Tytuł artykułu

A general on-the-fly algorithm for modifying the kinematic tree hierarchy

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
When conducting a dynamic simulation of a multibody mechanical system, the model definition may need to be altered during the simulation course due to, e.g., changes in the way the system interacts with external objects. In this paper, we propose a general procedure for modifying simulation models of articulated figures, particularly useful when dealing with systems in time-varying contact with the environment. The proposed algorithm adjusts model connectivity, geometry and current state, producing its equivalent ready to be used by the simulation procedure. Furthermore, we also provide a simple usage scenario-a passive planar biped walker.
Rocznik
Tom
22
Numer
2
Strony
423-435
Opis fizyczny
Daty
wydano
2012
otrzymano
2011-03-28
poprawiono
2011-07-11
Twórcy
  • Institute of Informatics, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
  • Polish-Japanese Institute of Information Technology, Aleja Legionów 2, 41-902 Bytom, Poland
  • Institute of Informatics, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
  • Polish-Japanese Institute of Information Technology, Aleja Legionów 2, 41-902 Bytom, Poland
  • Institute of Informatics, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
  • Polish-Japanese Institute of Information Technology, Aleja Legionów 2, 41-902 Bytom, Poland
Bibliografia
  • Baraff, D. (1996). Linear-time dynamics using Lagrange multipliers, SIGGRAPH '96: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, New York, NY, USA, pp. 137-146.
  • Chace, M. and Sheth, P. (1973). Adaptation of computer techniques to the design of mechanical dynamic machinery, Design Engineering Technical Conference, Cincinnati, OH, USA, ASME Paper 73-DEPT-58.
  • Coleman, M. (1998). A Stability Study of a Three-Dimensional Passive-Dynamic Model of Human Gait, Ph.D. thesis, Cornell University, Ithaca, NY.
  • Craig, J. (2005). Introduction to Robotics: Mechanics and Control, 3rd Edition, Prentice Hall, Upper Saddle River, NJ.
  • Featherstone, R. (1983). The calculation of robot dynamics using articulated body inertias, International Journal of Robotics Research 2(1): 13-30.
  • Featherstone, R. (1984). Robot Dynamics Algorithms, Ph.D. thesis, Edinburgh University, Edinburgh.
  • Featherstone, R. (1987). Robot Dynamics Algorithms, Kluwer Academic Publishers, Boston, MA/Dordrecht/Lancaster.
  • Featherstone, R. (2008). Rigid Body Dynamics Algorithms, Springer, New York, NY.
  • Garcia, M. (1999). Stability, Scaling, and Chaos in PassiveDynamic Gait Models, Ph.D. thesis, Cornell University, Ithaca, NY.
  • Goswami, A., Thuilot, B. and Espiau, B. (1996). Compasslike biped robot, Part I: Stability and bifurcation of passive gaits, Research Report RR-2996, INRIA, Montbonnot Saint Martin.
  • Hiskens, I. (2001). Stability of hybrid system limit cycles: Application to the compass gait biped robot, Proceedings of the 40th IEEE Conference on Decision and Control, Orlando, FL, USA, pp. 774-779.
  • Hooker, W. and Margulies, G. (1965). The dynamical attitude equations for an n-body satellite, Journal of the Astronautical Sciences 12(4): 123-128.
  • Jain, A. (2011). Robot and Multibody Dynamics: Analysis and Algorithms, Springer, New York, NY/Dordrecht/Heidelberg/London.
  • McGeer, T. (1990). Passive dynamic walking, International Journal of Robotics Research 9(2): 62-82.
  • Mirtich, B. (1996). Impulse-based Dynamic Simulation of Rigid Body Systems, Ph.D. thesis, University of California at Berkeley, CA.
  • Orlandea, N., Chace, M. and Calahan, D. (1977). A sparsityoriented approach to the dynamic analysis and design of mechanical systems, Part 1, Transactions of the ASME Journal of Engineering for Industry 99(3): 773-779.
  • Paul, B. (1975). Analytical dynamics of mechanisms-A computer oriented overview, Mechanisms and Machine Theory 10(6): 481-507.
  • Roberson, R. and Wittenburg, J. (1966). A dynamical formalism for an arbitrary number of interconnected rigid bodies with reference to the problem of satellite attitude control, Proceedings of the 3rd International Federation of Automatic Control Congress, London, UK, pp. 46D.2-46D.9.
  • Rodriguez, G. (1991). A spatial operator algebra for manipulator modeling and control, International Journal of Robotics Research 10(4): 371-381.
  • Uicker, J. (1965). On the Dynamic Analysis of Spatial Linkages Using 4 by 4 Matrices, Ph.D. thesis, Northwestern University, Evanston, IL.
  • Vereshchagin, A. (1974). Computer simulation of the dynamics of complicated mechanisms of robot manipulators, Engineering Cybernetics 12(6): 65-70.
  • Walker, M. and Orin, D. (1982). Efficient dynamic computer simulation of robotic mechanisms, Transactions of the ASME Journal of Dynamic Systems, Measurement and Control 104(3): 205-211.
  • Wittenburg, J. (2007). Dynamics of Multibody Systems, Springer, Berlin/Heidelberg/New York.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-amcv22i2p423bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.