PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 21 | 1 | 161-172
Tytuł artykułu

On generalized inverses of singular matrix pencils

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Linear time-invariant networks are modelled by linear differential-algebraic equations with constant coefficients. These equations can be represented by a matrix pencil. Many publications on this subject are restricted to regular matrix pencils. In particular, the influence of the Weierstrass structure of a regular pencil on the poles of its inverse is well known. In this paper we investigate singular matrix pencils. The relations between the Kronecker structure of a singular matrix pencil and the multiplicity of poles at zero of the Moore-Penrose inverse and the Drazin inverse of the rational matrix are investigated. We present example networks whose circuit equations yield singular matrix pencils.
Rocznik
Tom
21
Numer
1
Strony
161-172
Opis fizyczny
Daty
wydano
2011
otrzymano
2009-11-11
poprawiono
2010-06-28
poprawiono
2010-10-02
Twórcy
  • Institute of Control Theory, Faculty of Electrical and Computer Engineering, Technische Universität Dresden, D-01062 Dresden, Germany
  • Institute of Control Theory, Faculty of Electrical and Computer Engineering, Technische Universität Dresden, D-01062 Dresden, Germany
Bibliografia
  • Ayasun, S., Nwankpa, C.O. and Kwatny, H.G. (2004). Computation of singular and singularity induced bifurcation points of differential-algebraic power system model, IEEE Transactions on Circuits and Systems I 51(8): 1558.
  • Bandler, J.W. and Zhang, Q.J. (1986). Large change sensitivity analysis in linear systems using generalized householder formulae, International Journal of Circuit Theory and Applications 14(2): 89-101.
  • Beelen, T. and van Dooren, P. (1988). An improved algorithm for the computation of Kronecker's canonical form of a singular pencil, Linear Algebra and Its Applications 105: 9-65.
  • Ben-Israel, A. and Greville, T.N.E. (1974). Generalized Inverses: Theory and Applications, Wiley-Interscience, New York, NY.
  • Boullion, T.L. and Odell, P.L. (1971). Generalized Inverse Matrices, Wiley-Interscience, New York, NY.
  • Brenan, K.E., Campbell, S.L. and Petzold, L.R. (1996). Numerical Solution of Initial-Value Problems in DifferentialAlgebraic Equations, 2nd Edn., SIAM, Philadelphia, PA.
  • Bunse-Gerstner, A., Byers, R., Mehrmann, V. and Nichols, N.K. (1991). Numerical computation of an analytic singular value decomposition of a matrix valued function, Numerische Mathematik 60(1): 1-39.
  • Campbell, S.L. and Meyer, C.D. (1979). Generalized Inverses of Linear Transformations, Dover Publications, New York, NY.
  • Davies, A.C. (1966). Topological solution of networks containing nullators and norators, Electronics Letters 2(3): 90-92.
  • Demmel, J. and Kågström, B. (1993). The generalized Schur decomposition of an arbitrary pencil λA-B, ACM Transactions on Mathematical Software 19(2): 160-174.
  • Dziurla, B. and Newcomb, R. (1989). Input-output pairing in LTV semistate systems, IEEE Transactions on Circuits and Systems 36(1): 139-141.
  • Dziurla, B. and Newcomb, R.W. (1987). Nonregular semistate systems: Examples and input-output pairing, Proceedings of the IEEE Conference on Decision and Control, Los Angeles, CA, USA, pp. 1125-1126.
  • Estévez Schwarz, D. and Tischendorf, C. (2000). Structural analysis of electric circuits and consequences for MNA, International Journal of Circuit Theory and Applications 28(2): 131-162.
  • Fosséprez, M. (1992). Non-linear Circuits-Qualitative Analysis of Non-linear, Non-reciprocal Circuits, Wiley, Chichester.
  • Gantmacher, F.R. (1959). Theory of Matrices, Vol. II, Chelsea, New York, NY.
  • Gear, C.W. (1971). Simultaneous numerical solution of differential-algebraic equations, IEEE Transactions on Circuit Theory 18(1): 89-95.
  • Gear, C.W. and Petzold, L.R. (1982). Differential/algebraic systems and matrix pencils, in B. Kågström and A. Ruhe (Eds.), Matrix Pencils, Lecture Notes in Mathematics, Vol. 973, Springer-Verlag, New York, NY, pp. 75-89.
  • Gear, C.W. and Petzold, L.R. (1984). ODE methods for the solution of differential/algebraic systems, SIAM Journal on Numerical Analysis 21(4): 717-728.
  • Griepentrog, E. and März, R. (1986). Differential-Algebraic Equations and Their Numerical Treatment, Teubner-Texte zur Mathematik, Vol. 88, Teubner Verlagsgesellschaft, Leipzig.
  • Günther, M. and Feldmann, U. (1999a). CAD-based electriccircuit modeling in industry, I: Mathematical structure and index of network equations, Surveys on Mathematics for Industry 8: 97-129.
  • Günther, M. and Feldmann, U. (1999b). CAD-based electriccircuit modeling in industry, II: Impact of circuit configurations and parameters, Surveys on Mathematics for Industry 8: 131-157.
  • Hairer, E., Lubich, C. and Roche, M. (1989). The Numerical Solution of Differential-Algebraic Systems by RungeKutta Methods, Lecture Notes in Mathematics, Vol. 1409, Springer-Verlag, Berlin.
  • Hasler, M. (1986). Non-linear non-reciprocal resistive circuits with a structurally unique solution, International Journal of Circuit Theory and Applications 14(3): 237-262.
  • Hayton, G.E., Pugh, A.C. and Fretwell, P. (1988). Infinite elementary divisors of a matrix polynomial and implications, International Journal of Control 47(1): 53-64.
  • Hou, M. (1995). Descriptor Systems: Observers and Fault Diagnosis, Fortschrittsberichte, Reihe 8: Meß-, Steuerungsund Regelungstechnik, Vol. 482, VDI Verlag, Düsseldorf.
  • Hou, M. and Müller, P.C. (1992). A singular matrix pencil theory for linear descriptor systems, Proceedings of the Symposium on Implicit and Nonlinear Systems, Ft Worth, TX, USA, pp. 178-190.
  • Hou, M., Pugh, A.C. and Hayton, G.E. (1997). Generalized transfer functions and input-output equivalence, International Journal of Control 68(5): 1163-1178.
  • Karcanias, N. (1987). On the characteristic, Weyr sequences, the Kronecker invariants and canonical form of a singular pencil, in R. Isermann (Ed.), Preprint from Automatic Control World Congress, Pergamon Press, Munich, pp. 109-114.
  • Karcanias, N. and Hayton, G.E. (1981). Generalized autonomous dynamical systems, algebraic duality and geometric theory, in H. Akashi (Ed.), Preprint from Automatic Control World Congress, Pergamon Press, Kyoto, pp. 289-294.
  • Kronecker, L. (1890). Algebraic reduction of pencils of bilinear forms, Sitzungsberichte der Preussischen Akademie der Wissenschaften, pp. 1225-1237, (in German).
  • Kublanovskaya, V.N. (1983). Analysis of singular matrix pencils, Journal of Mathematical Sciences 23(1): 1939-1950.
  • Kunkel, P. and Mehrmann, V. (1990). Numerical solution of differential algebraic Riccati equations, Linear Algebra and Its Applications 137/138: 39-66.
  • Kunkel, P. and Mehrmann, V. (2006). Differential-Algebraic Equations: Analysis and Numerical Solution, EMS Publishing House, Zürich.
  • Kunkel, P., Mehrmann, V., Rath, W. and Weickert, J. (1997). A new software package for linear differentialalgebraic equations, SIAM Journal on Scientific Computing 18(1): 115-138.
  • Kwatny, H.G., Fischl, R.F. and Nwankpa, C.O. (1995). Local bifurcation in power systems: Theory, computation, and application, Proceedings of the IEEE 83(11): 1456-1483.
  • Marszalek, W. and Trzaska, Z.W. (2005). Singularity-induced bifurcations in electrical power systems, IEEE Transactions on Power Systems 20(1): 312-320.
  • Mehrmann, V.L. (1991). The Autonomous Linear Quadratic Control Problem, Lecture Notes in Control and Information Science, Vol. 163, Springer-Verlag, Berlin.
  • Meyer, C.D. and Rose, N.J. (1977). The index and the Drazin inverse of block triangular matrices, SIAM Journal on Applied Mathematics 33(1): 1-7.
  • Müller, P.C. (2005). Remark on the solution of linear timeinvariant descriptor systems, Proceedings in Applied Mathematics and Mechanics 5(1): 175-176.
  • Özcaldiran, K. and Lewis, F.L. (1990). On the regularizability of singular systems, IEEE Transactions on Automatic Control 35(10): 1156-1160.
  • Pandolfi, L. (1981). On the regulator problem for linear degenerate control systems, Journal of Optimization Theory and Applications 33(2): 243-254.
  • Penrose, R. (1955). A generalized inverse for matrices, Proceedings of the Cambridge Philosophical Society 51: 406-413.
  • Rao, C.R. and Mitra, S.K. (1971). Generalized Inverse of Matrices and Its Applications, John Wiley & Sons, New York, NY.
  • Reinschke, K. and Schwarz, P. (1976). Methods for ComputerAided Analysis of Linear Networks, Elektronisches Rechnen und Regeln, Vol. 9, Akademie-Verlag, Berlin, (in German).
  • Reißig, G. (1996). Differential-algebraic equations and impasse points, IEEE Transactions on Circuits and Systems I 43(3): 122-133.
  • Reißig, G. (1998). Contributions to the Theory and Applications of Implicit Differential Equations, Ph.D. thesis, Technische Universität Dresden, Dresden, (in German).
  • Reißig, G. (1999). Extension of the normal tree method, International Journal of Circuit Theory and Applications 27(2): 241-265.
  • Reißig, G. and Boche, H. (2003). On singularities of autonomous implicit ordinary differential equations, IEEE Transactions on Circuits and Systems I 50(7): 922-931.
  • Reißig, G. and Feldmann, U. (1996). Computing the generic index of the circuit equations of linear active networks, Proceedings of the International Symposium on Circuits and Systems, Atlanta, GA, USA, Vol. III, pp. 190-193.
  • Riaza, R. (2004). A matrix pencil approach to the local stability analysis of non-linear circuits, International Journal of Circuit Theory and Applications 32(1): 23-46.
  • Riaza, R. (2006). Time-domain properties of reactive dual circuits, International Journal of Circuit Theory and Applications 34(3): 317-340.
  • Riaza, R. (2008). Differential-Algebraic Systems: Analytical Aspects and Circuit Applications, World Scientific, River Edge, NJ.
  • Röbenack, K. (1999). Contribution to the Analysis of Descriptor Systems, Shaker-Verlag, Aachen, (in German).
  • Röbenack, K. and Reinschke, K.J. (1998). Digraph based determination of Jordan block size structure of singular matrix pencils, Linear Algebra and Its Applications 275-276: 495-507.
  • Röbenack, K. and Reinschke, K.J. (2000). Structural analysis of the input-output behaviour of singular descriptor systems, Workshop über Deskriptorsysteme, Paderborn, Germany, (in German).
  • Sannuti, P. (1981). Singular perturbations in the state space approach of linear electrical networks, International Journal of Circuit Theory and Applications 9(1): 47-57.
  • Sincovec, R.F., Erisman, A.M., Yip, E.L. and Epton, M.A. (1981). Analysis of descriptor systems using numerical algorithms, IEEE Transactions on Automatic Control 26(1): 139-147.
  • Straube, B., Reinschke, K., Vermeiren, W., Röbenack, K., Müller, B. and Clauß, C. (2001). DAE-index increase in analogue fault simulation, in R. Merker and W. Schwarz (Eds.), System Design Automation-Fundamentals, Principles, Methods, Examples, Kluwer, Boston, MA, pp. 221-232.
  • Tischendorf, C. (1996). Graph-theoretic determination of the structural index of algebraic-differential equations in network analysis in W. Mathis and P. Noll (Eds.), Neue Anwendungen theoretischer Konzepte in der Elektrotechnik mit Gedenksitzung zum 50. Todestag von Wilhelm Cauer, VDE-Verlag, Berlin, pp. 55-60, (in German).
  • Tischendorf, C. (1999). Topological index calculation of DAEs in circuit simulation, Surveys on Mathematics for Industry 8(3-4): 187-199.
  • van Dooren, P.M. (1981). The generalized eigenstructure problem in linear system theory, IEEE Transactions on Automatic Control 26(1): 111-129.
  • Vardulakis, A.I.G. and Karcanias, N. (1983). Relations between strict equivalence invariants and structure at infinity of matrix pencils, IEEE Transactions on Automatic Control 28(4): 514-516.
  • Vardulakis, A.I.G., Limebeer, D.N.J. and Karcanias, N. (1982). Structure and Smith-MacMillan form of a rational matrix at infinity, International Journal of Control 35(4): 701-725.
  • Varga, A. (1998). Computation of inner-outer factorization of rational matrices, IEEE Transactions on Automatic Control 43(5): 684-688.
  • Varga, A. (2001). Computing generalized inverse systems using matrix pencil methods, International Journal of Applied Mathematics and Computer Science 11(5): 1055-1068.
  • Weierstrass, K. (1868). On the theory of bilinear and quadratic forms, Monatsbericht der Preussischen Akademie der Wissenschaften, reprinted in Mathematische Werke von Karl Weierstrass, Vol. II, 1985, Mayer & Müller, Berlin, pp. 310-338, (in German).
  • Wilkinson, J.H. (1979). Kronecker's canonical form and the QZ-algorithm, Linear Algebra and Its Applications 28: 285-303.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-amcv21i1p161bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.