PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 20 | 1 | 55-67
Tytuł artykułu

On classification with missing data using rough-neuro-fuzzy systems

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents a new approach to fuzzy classification in the case of missing data. Rough-fuzzy sets are incorporated into logical type neuro-fuzzy structures and a rough-neuro-fuzzy classifier is derived. Theorems which allow determining the structure of the rough-neuro-fuzzy classifier are given. Several experiments illustrating the performance of the roughneuro-fuzzy classifier working in the case of missing features are described.
Rocznik
Tom
20
Numer
1
Strony
55-67
Opis fizyczny
Daty
wydano
2010
otrzymano
2009-02-07
poprawiono
2009-07-21
Twórcy
  • Institute of Information Technology, Academy of Management (SWSPiZ), ul. Sienkiewicza 9, 90-113 Łódź, Poland
  • Department of Computer Engineering, Częstochowa University of Technology, ul. Armii Krajowej 36, 42-200 Częstochowa, Poland
Bibliografia
  • Bishop, C. M. (1995). Neural Networks for Pattern Recognition, Clarendon Press, Oxford.
  • Broekhoven, E. V. and Beats, B. D. (2006). Fast and accurate center of gravity defuzzification of fuzzy system outputs defined on trapezoidal fuzzy partitions, Fuzzy Sets and Systems 157(7): 904-918.
  • Chan, L. S., Gilman, J. A. and Dun, O. J. (1976). Alternative approaches to missing values in discriminant analysis, Journal of the American Statistical Association 71(356): 842-844.
  • Cooke, M., Green, P., Josifovski, L. and Vizinho, A. (2001). Robust automatic speech recognition with missing and unreliable acoustic data, Speech Communication 34(3): 267-285.
  • Czogała, E. and Łęski, J. (2000). Fuzzy and Neuro-Fuzzy Intelligent Systems, Physica-Verlag, Heidelberg/New York, NY.
  • Dixon, J. K. (1979). Pattern recognition with partly missing data, IEEE Transactional on Systems, Man and Cybernetics 9(10): 617-621.
  • Driankov, D., Hellendoorn, H. and Reinfrank, M. (1993). An Introduction to Fuzzy Control, Springer-Verlag, Berlin/Heidelberg.
  • Dubois, D. and Prade, H. (1990). Rough fuzzy sets and fuzzy rough sets, International Journal of General Systems 17(2-3): 191-209.
  • Dubois, D. and Prade, H. (1992). Putting rough sets and fuzzy sets together, in R. Słowiński (Ed.), Intelligent Decision Support: Handbook of Applications and Advances of the Rough Sets Theory, Kluwer, Dordrecht, pp. 203-232.
  • Duda, R. O., Hart, P. E. and Stork, D. G. (2001). Pattern Classification, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, NY/Chichester/Weinheim/Brisbane/Singapore/Toronto.
  • Fodor, J. C. (1991). On fuzzy implication operators, Fuzzy Sets and Systems 42(3): 293-300.
  • Fogel, D. B. (1995). Evolutionary Computation: Towards a New Philosophy of Machine Intelligence, IEEE Press, New York, NY.
  • Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley Publishing Company Inc, Reading, MA.
  • Grzymala-Busse, J. W. (1989). An overview of the LERS1 learning systems, Proceedings of the 2nd International Conference on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems, Tullahoma, TN, USA, pp. 838-844.
  • Grzymala-Busse, J. W. (1992). LERS-A system for learning from examples based on rough sets, in R. Slowinski (Ed.), Intelligent Decision Support: Handbook of Applications and Advances of the Rough Sets Theory, Kluwer, Dordrecht, pp. 3-18.
  • Jin, Y. (2000). Fuzzy modeling of high-dimensional systems: Complexity reduction and interpretability improvement, IEEE Transactions on Fuzzy Systems 8(2): 212-221.
  • Kecman, V. (2001). Learning and Soft Computing, Support Vector Machines, Neural Networks and Fuzzy Logic Models, The MIT Press, Cambridge, MA.
  • Klement, E. P., Mesiar, R. and Pap, E. (2000). Triangular Norms, Kluwer Academic Publishers, Dordrecht.
  • Kuncheva, L. I. (2000). Fuzzy Classifier Design. Studies in Fuzziness and Soft Computing, Physica-Verlag, Heidelberg.
  • Lee, K. M. and Kwang, D. H. (1994). A fuzzy neural network model for fuzzy inference and rule tuning, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 2(3): 265-277.
  • Lin, C. T. and Lee, G. C. S. (1991). Neural-network-based fuzzy logic control and decision system, IEEE Transactions on Computers 40(12): 1320-1336.
  • Little, R. J. A. and Rubin, D. B. (2002). Statistical Analysis with Missing Data, 2nd Edn, Wiley-Interscience, New York, NY.
  • Marin, N., Molina, C., Serrano, J. and Vila, M. (2008). A complexity guided algorithm for association rule extraction on fuzzy datacubes, IEEE Transactions on Fuzzy Systems 16(3): 693-714.
  • Mas, M., Monserrat, M., Torrens, J., and Trillas, E. (2007). A survey on fuzzy implication functions, IEEE Transactions on Fuzzy Systems 15(6): 1107-1121.
  • Mertz, C. J. and Murphy, P. M. (n.d.). UCI respository of machine learning databases, http://www.ics.uci. edu/pub/machine-learning-databases.
  • Michalewicz, Z. (1992). Genetic Algorithms + Data Structures = Evolution Programs, Springer-Verlag, Berlin/Heidelberg/New York, NY.
  • Morin, R. L. and Raeside, D. E. (1981). A reappraisal of distance-weighted k-nearest neighbor classification for pattern recognition with missing data, IEEE Transactions on Systems, Man and Cybernetics 11(3): 241-243.
  • Nauck, D., Klawonn, F. and Kruse, R. (1997). Foundations of Neuro-Fuzzy Systems, Wiley, Chichester.
  • Nowicki, R. (2000). The Neuro-Fuzzy Systems which Realizes Various Methods of Fuzzy Reasoning, Ph.D. thesis, AGH University of Science and Technology, Cracow, (in Polish).
  • Nowicki, R. (2004). Rough sets in the neuro-fuzzy architectures based on non-monotonic fuzzy implications, in L. Rutkowski, J. Siekmann, R. Tadeusiewicz and L.A. Zadeh (Eds), Artificial Inteligence and Soft Computing-ICAISC 2004, Lecture Notes in Artificial Intelligence, Springer-Verlag, Berlin/Heidelberg, Vol. 3070, pp. 518-525.
  • Nowicki, R. (2008). On combining neuro-fuzzy architectures with the rough set theory to solve classification problems with incomplete data, IEEE Transactions on Knowledge Data Engineering 20(9): 1239-1253.
  • Nowicki, R. (2009). Rough-neuro-fuzzy structures for classification with missing data, IEEE Transactions on Systems, Man and Cybernetics B 39(6): 1334-1347.
  • Nowicki, R. and Rutkowska, D. (2000). Neuro-fuzzy architectures based on yager implication, Proceedings of the 5th Conference on Neural Networks and Soft Computing, Zakopane, Poland, pp. 353-360.
  • Patel, A. V. and Mohan, B. M. (2002). Some numerical aspects of center of area defuzzification method, Fuzzy Sets and Systems 132(3): 401-409.
  • Pawlak, Z. (1982). Rough sets, International Journal of Information and Computer Science 11(341): 341-356.
  • Pawlak, Z. (1991). Rough Sets: Theoretical Aspects of Reasoning About Data, Kluwer, Dordrecht.
  • Pawlak, Z. (2002). Rough sets, decision algorithms and Bayes' theorem, European Journal of Operational Research 136(1): 181-189.
  • Pedrycz, W. and Bargiela, A. (2002). Granular clustering: A granular signature of data, IEEE Transactions on Systems, Man and Cybernetics B 32(2): 212-224.
  • Polkowski, L. (2002). Rough Sets. Mathematical Foundation, Physica-Verlag, Heidelberg/New York, NY.
  • Renz, C., Rajapakse, J. C., Razvi, K. and Liang, S. K. C. (2002). Ovarian cancer classification with missing data, Proceedings of the 9th International Conference on Neural Information Processing, ICONIP'02, Singapore, Vol. 2, pp. 809-813.
  • Rutkowska, D. and Nowicki, R. (2000a). Implication-based neuro-fuzzy architectures, International Journal of Applied Mathematics and Computer Science 10(4): 675-701.
  • Rutkowska, D. and Nowicki, R. (2000b). New neuro-fuzzy architectures, Proceedings of the International Conference on Artificial and Computational Intelligence for Decision, Control and Automation in Engineering and Industrial Applications, AcIDcA'2000, Monastir, Tunisia, pp. 82-87.
  • Rutkowska, D., Nowicki, R. and Rutkowski, L. (2000). Neurofuzzy architectures with various implication operators, The State of the Art in Computational Intelligence-Proceedings of the International Symposium on Computational Intelligence (ISCI 2000), Kosice, Slovakia, pp. 214-219.
  • Rutkowski, L. and Cpałka, K. (2003). Flexible neuro-fuzzy systems, IEEE Transactions on Neural Networks 14(3): 554-574.
  • Rutkowski, L. and Cpałka, K. (2005). Designing and learning of adjustable quasi-triangular norms with applications to neuro-fuzzy systems, IEEE Transactions on Fuzzy Systems 13(1): 140-151.
  • Burges, C. J. C. (1998). A tutorial on support vector machines for pattern recognition, Data Mining and Knowledge Discovery 2(2): 121-167.
  • Tanaka, M., Kotokawa, Y. and Tanino, T. (1996). Patern classification by stochastic neural network with missing data, IEEE International Conference on System, Man and Cybernetics, Beijing, China, Vol. 1, pp. 690-695.
  • Wang, L. X. (1994). Adaptive Fuzzy Systems and Control, PTR Prentice Hall, Englewood Cliffs, NJ.
  • Yager, R. R. and Filev, D. P. (1994). Essentials of Fuzzy Modeling and Control, John Wiley and Sons, New York, NY.
  • Yao, J. T. and Yao, Y. Y. (2002). Induction of classification rules by granular computing, in J.J. Alpigini, J.F. Peters, J.F. Skowron and N. Zhang (Eds), Rough Sets and Current Trends in Computing, Lecture Notes in Artificial Intelligence, Springer, Berlin/Heidelberg, Vol. 2475, pp. 331-338.
  • Zadeh, L. A. (1965). Fuzzy sets, Information and Control 8(3): 338-353.
  • Zadeh, L. A. (1975). The concept of a linguistic variable and its application to approximate reasoning-Part 1, Information Sciences 8(3): 199-249.
  • Żurada, J. M. (1992). Introduction to Artificial Neural Systems, West Publishing Company, St. Paul, MN.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-amcv20i1p55bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.