Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 19 | 4 | 609-617
Tytuł artykułu

Zeros in linear systems with time delay in state

Treść / Zawartość
Warianty tytułu
Języki publikacji
The concept of invariant zeros in a linear time-invariant system with state delay is considered. In the state-space framework, invariant zeros are treated as triples: complex number, nonzero state-zero direction, input-zero direction. Such a treatment is strictly related to the output-zeroing problem and in that spirit the zeros can be easily interpreted. The problem of zeroing the system output is discussed. For systems of uniform rank, the first nonzero Markov parameter comprises a certain amount of information concerning invariant zeros, output-zeroing inputs and zero dynamics. General formulas for output-zeroing inputs and zero dynamics are provided.
Opis fizyczny
  • Faculty of Electrical Engineering, Warsaw University of Technology, Pl. Politechniki 1, 00-661 Warsaw, Poland
  • Bourles, H. and Fliess, M. (1997). Finite poles and zeros of linear systems: An intrinsic approach, International Journal of Control 68(4):897-922.
  • Górecki, H., Fuksa, S., Grabowski, P. and Korytowski, A. (1989). Analysis and Synthesis of Time Delay Systems, PWN/Wiley, Warsaw/Chichester.
  • Hale, J. (1977). Theory of Functional Differential Equations, Springer, New York, NY.
  • Isidori, A. (1995). Nonlinear Control Systems, Springer Verlag, London.
  • Kamen, E. W., Khargonekar, P. P. and Tannenbaum, A. (1985). Stabilization of time-delay systems using finitedimensional compensators, IEEE Transactions on Automatic Control 30(1): 75-78.
  • Kharitonov, V. L. (1999). Robust stability analysis of time delay systems: A survey, Annual Reviews in Control 23(1): 185-196.
  • Kharitonov V. L. and Hinrichsen, D. (2004). Exponential estimates for time delay systems, Systems and Control Letters 53(5):395-405.
  • Lee, E. B. and Olbrot, A. W. (1981). Observability and related structural results for linear hereditary systems, International Journal of Control 34(6):1061-1078.
  • MacFarlane, A. G. J. and Karcanias, N. (1976). Poles and zeros of linear multivariable systems: A survey of the algebraic, geometric and complex variable theory, International Journal of Control 24(1):33-74.
  • Marro, G. (1996). Multivariable regulation in geometric terms: Old and new results, in C. Bonivento, G. Marro, R. Zanasi (Eds.), Colloquium on Automatic Control, Lecture Notes in Control and Information Sciences, Vol. 215, Springer Verlag, London, pp. 77-138.
  • Pandolfi, L. (1982). Transmission zeros of systems with delays, International Journal of Control 36(6): 959-976.
  • Pandolfi, L. (1986). Disturbance decoupling and invariant subspaces for delay systems, Applied Mathematics and Optimization 14(1): 55-72.
  • Richard, J. P. (2003). Time-delay systems: An overview of some recent advances and open problems, Automatica 39(10): 1667-1694.
  • Schrader, C. B. and Sain, M. K. (1989). Research on system zeros: A survey, International Journal of Control 50(4):1407-1433.
  • Sontag, E. D. (1990). Mathematical Control Theory, Springer Verlag, New York, NY.
  • Tokarzewski, J. (2002). Zeros in Linear Systems: A Geometric Approach, Warsaw University of Technology Press, Warsaw.
  • Tokarzewski, J. (2006). Finite Zeros in Discrete-Time Control Systems, Lecture Notes in Control and Information Sciences, Vol. 338, Springer Verlag, Berlin.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.