Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 19 | 2 | 255-261

Tytuł artykułu

Independence of asymptotic stability of positive 2D linear systems with delays of their delays

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
It is shown that the asymptotic stability of positive 2D linear systems with delays is independent of the number and values of the delays and it depends only on the sum of the system matrices, and that the checking of the asymptotic stability of positive 2D linear systems with delays can be reduced to testing that of the corresponding positive 1D systems without delays. The effectiveness of the proposed approaches is demonstrated on numerical examples.

Rocznik

Tom

19

Numer

2

Strony

255-261

Opis fizyczny

Daty

wydano
2009
otrzymano
2008-10-06
poprawiono
2009-02-17

Twórcy

  • Faculty of Electrical Engineering, Białystok Technical University, ul. Wiejska 45D, 15-351 Białystok

Bibliografia

  • Bose, N.K. (1982). Applied Multidimensional System Theory, Van Nostrand Reinhold Co., New York, NY.
  • Bose, N.K. (1985). Multidimensional Systems Theory Progress: Directions and Open Problems, D. Reineld Publishing Co., Dordrecht.
  • Busłowicz, M. (2007). Robust stability of positive discrete-time linear systems with multiple delays with linear unity rank uncertainty structure or non-negative perturbation matrices, Bulletin of the Polish Academy of Sciences: Technical Sciences 55(1): 1-5.
  • Busłowicz, M. (2008a). Robust stability of convex combination of two fractional degree characteristic polynomials, Acta Mechanica et Automatica 2(2): 5-10.
  • Busłowicz, M. (2008b). Simple stability conditions for linear positive discrete-time systems with delays, Bulletin of the Polish Academy of Sciences: Technical Sciences 57(1): 325-328.
  • Farina, L. and Rinaldi, S. (2000). Positive Linear Systems: Theory and Applications, J. Wiley, New York, NY.
  • Fornasini, E. and Marchesini, G. (1976). State-space realization theory of two-dimensional filters, IEEE Transactions on Automatic Control AC-21: 481-491.
  • Fornasini, E. and Marchesini, G. (1978). Double indexed dynamical systems, Mathematical Systems Theory 12: 59-72.
  • Gałkowski, K. (1997). Elementary operation approach to state space realization of 2D systems, IEEE Transactions on Circuit and Systems 44: 120-129.
  • Gałkowski, K. (2001). State Space Realizations of Linear 2D Systems with Extensions to the General nD (n>2) Case, Springer-Verlag, London.
  • Hmamed, A., Ait, Rami, M. and Alfidi, M. (2008). Controller synthesis for positive 2D systems described by the Roesser model, IEEE Transactions on Circuits and Systems, (submitted).
  • Kaczorek, T. (1985). Two-Dimensional Linear Systems, Springer-Verlag, Berlin.
  • Kaczorek, T. (2001). Positive 1D and 2D Systems, Springer-Verlag, London.
  • Kaczorek, T. (2009a). Asymptotic stability of positive 2D linear systems with delays, Bulletin of the Polish Academy of Sciences: Technical Sciences 57(1), (in press).
  • Kaczorek, T. (2009b). Asymptotic stability of positive 2D linear systems, Proceedings of the 14-th Scientific Conference on Computer Applications in Electrical Engineering, Poznań, Poland, pp. 1-11.
  • Kaczorek, T. (2009c). LMI approach to stability of 2D positive systems, Multidimensional Systems and Signal Processing 20: 39-54.
  • Kaczorek, T. (2008a). Asymptotic stability of positive 1D and 2D linear systems, Recent Advances in Control and Automation, Academic Publishing House EXIT, pp. 41-52.
  • Kaczorek, T. (2008c). Checking of the asymptotic stability of positive 2D linear systems with delays, Proceedings of the Conference on Computer Systems Aided Science and Engineering Work in Transport, Mechanics and Electrical Engineering, TransComp, Zakopane, Poland, Monograph No. 122, pp. 235-250, Technical University of Radom, Radom.
  • Kaczorek, T. (2007). Choice of the forms of Lyapunov functions for positive 2D Roesser model, International Journal Applied Mathematics and Computer Science 17(4): 471-475.
  • Kaczorek, T. (2004). Realization problem for positive 2D systems with delays, Machine Intelligence and Robotic Control 6(2): 61-68.
  • Kaczorek, T. (1996). Reachability and controllability of nonnegative 2D Roesser type models, Bulletin of the Polish Academy of Sciences: Technical Sciences 44(4): 405-410.
  • Kaczorek, T. (2005). Reachability and minimum energy control of positive 2D systems with delays, Control and Cybernetics 34(2): 411-423.
  • Kaczorek, T. (2006a). Minimal positive realizations for discretetime systems with state time-delays, International Journal for Computation and Mathematics in Electrical and Electronic Engineering, COMPEL 25(4): 812-826.
  • Kaczorek, T. (2006b). Positive 2D systems with delays, Proceedings of the 12-th IEEE/IFAC International Conference on Methods in Automation and Robotics, MMAR 2006, Międzyzdroje, Poland.
  • Kaczorek, T. (2003). Realizations problem for positive discretetime systems with delays, Systems Science 29(1): 15-29.
  • Klamka, J. (1991). Controllability of Dynamical Systems, Kluwer Academic Publishers, Dordrecht.
  • Kurek, J. (1985). The general state-space model for a twodimensional linear digital systems, IEEE Transactions on Automatic Control AC-30: 600-602.
  • Roesser, R.P. (1975). A discrete state-space model for linear image processing, IEEE Transactions on Automatic Control AC-20(1): 1-10,
  • Valcher, M.E. (1997). On the internal stability and asymptotic behavior of 2D positive systems, IEEE Transactions on Circuits and Systems-I 44(7): 602-613.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.bwnjournal-article-amcv19i2p255bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.