Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 19 | 2 | 233-246

Tytuł artykułu

Efficient nonlinear predictive control based on structured neural models

Treść / Zawartość

Warianty tytułu

Języki publikacji



This paper describes structured neural models and a computationally efficient (suboptimal) nonlinear Model Predictive Control (MPC) algorithm based on such models. The structured neural model has the ability to make future predictions of the process without being used recursively. Thanks to the nature of the model, the prediction error is not propagated. This is particularly important in the case of noise and underparameterisation. Structured models have much better long-range prediction accuracy than the corresponding classical Nonlinear Auto Regressive with eXternal input (NARX) models. The described suboptimal MPC algorithm needs solving on-line only a quadratic programming problem. Nevertheless, it gives closed-loop control performance similar to that obtained in fully-fledged nonlinear MPC, which hinges on online nonconvex optimisation. In order to demonstrate the advantages of structured models as well as the accuracy of the suboptimal MPC algorithm, a polymerisation reactor is studied.








Opis fizyczny




  • Institute of Control and Computation Engineering, Faculty of Electronics and Information Technology, Warsaw University of Technology, ul. Nowowiejska 15/19, 00-665 Warsaw, Poland


  • Åkesson, B. M. and Toivonen, H. T. (2006). A neural network model predictive controller, Journal of Process Control 16(3): 937-946.
  • Bazaraa, M. S., Sherali, J. and Shetty, K. (1993). Nonlinear Programming: Theory and Algorithms, John Wiley & Sons, New York, NY.
  • Clarke, D. W. and Mohtadi, C. (1989). Properties of generalized predictive control, Automatica 25(6): 859-875.
  • Cutler, R. and Ramaker, B. (1979). Dynamic matrix control - A computer control algorithm, Proceedings of the AIChE National Meeting, Houston, TX, USA.
  • Doyle, F. J., Ogunnaike, B. A. and Pearson, R. K. (1995). Nonlinear model-based control using second-order Volterra models, Automatica 31(5): 697-714.
  • Doyle, F. J., R. K. P. and Ogunnaike, B. A. (2001). Identification and Control of Process Systems Using Volterra Models, Springer, New York, NY.
  • Haykin, S. (1999). Neural Networks. A Comprehensive Foundation, 2nd Edition, Prentice Hall, Englewood Cliffs, NJ.
  • Henson, M. A. (1998). Nonlinear model predictive control: Current status and future directions, Computers and Chemical Engineering 23(2): 187-202.
  • Hornik, K., Stinchcombe, M. and White, H. (1989). Multilayer feedforward networks are universal approximators, Neural Networks 2(5): 359-366.
  • Hussain, M. A. (1999). Review of the applications of neural networks in chemical process control-Simulation and online implementation, Artificial Intelligence in Engineering 13(1): 55-68.
  • Ławryńczuk, M. (2007a). A family of model predictive control algorithms with artificial neural networks, International Journal of Applied Mathematics and Computer Science 17(2): 217-232.
  • Ławryńczuk, M. (2007b). Suboptimal nonlinear predictive control with structured neural models, in J. M. de Sá, J. M. Alexandre, W. Duch and D. Mandic (Eds.), The 17th International Conference on Artificial Neural Networks, ICANN 2007, Porto, Portugal, Springer, Heidelberg, pp. 630-639.
  • Ławryńczuk, M. and Tadej, W. (2008). A computationally efficient stable dual-mode type nonlinear predictive control algorithm, Control and Cybernetics 37(1): 99-132.
  • LeCun, Y., Denker, J. and Solla, S. (1989). Optimal brain damage, in D. Touretzky (Ed.), Advances of NIPS2, Morgan Kaufmann, San Mateo, CA, pp. 598-605.
  • Liu, D., Shah, S. L. and Fisher, D. G. (1999). Multiple prediction models for long range predictive control, Proceedings of the IFAC World Congress, Beijing, China, (on CD-ROM).
  • Liu, G. P., Kadirkamanathan, V. and Billings, S. A. (1998). Predictive control for non-linear systems using neural networks, International Journal of Control 71(6): 1119-1132.
  • Luyben, W. L. (1990). Process Modelling, Simulation and Control for Chemical Engineers, McGraw Hill, New York, NY.
  • Maciejowski, J. M. (2002). Predictive Control with Constraints, Prentice Hall, Harlow.
  • Marlin, T. E. (1995). Process Control, McGraw-Hill, New York, NY.
  • Morari, M. and Lee, J. (1999). Model predictive control: Past, present and future, Computers and Chemical Engineering 23(4): 667-682.
  • Nørgaard, M., Ravn, O., Poulsen, N. K. and Hansen, L. K. (2000). Neural Networks for Modelling and Control of Dynamic Systems, Springer, London.
  • Parisini, T., Sanguineti, M. and Zoppoli, R. (1998). Nonlinear stabilization by receding-horizon neural regulators, International Journal of Control 70(3): 341-362.
  • Piche, S., Sayyar-Rodsari, B., Johnson, D. and Gerules, M. (2000). Nonlinear model predictive control using neural networks, IEEE Control Systems Magazine 20(3): 56-62.
  • Pottmann, M. and Seborg, D. E. (1997). A nonlinear predictive control strategy based on radial basis function models, Computers and Chemical Engineering 21(9): 965-980.
  • Qin, S. J. and Badgwell, T. (2003). A survey of industrial model predictive control technology, Control Engineering Practice 11(7): 733-764.
  • Rossiter, J. A. (2003). Model-Based Predictive Control, CRC Press, Boca Raton, FL.
  • Rossiter, J. A. and Kouvaritakis, B. (2001). Modelling and implicit modelling for predictive control, International Journal of Control 74(11): 1085-1095.
  • Scattolini, R. and Bittanti, S. (1990). On the choice of the horizon in long-range predictive control-Some simple criteria, Automatica 26(5): 915-917.
  • Tatjewski, P. (2007). Advanced Control of Industrial Processes, Structures and Algorithms, Springer, London.
  • Tatjewski, P. and Ławryńczuk, M. (2006). Soft computing in model-based predictive control, International Journal of Applied Mathematics and Computer Science 16(1): 101-120.
  • Trajanoski, Z. and Wach, P. (1998). Neural predictive control for insulin delivery using the subcutaneous route, IEEE Transactions on Biomedical Engineering 45(9): 1122-1134.
  • Yu, D. L. and Gomm, J. B. (2003). Implementation of neural network predictive control to a multivariable chemical reactor, Control Engineering Practice 11(11): 1315-1323.

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.