PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | 18 | 2 | 229-239
Tytuł artykułu

Extension of first order Predictive Functional Controllers to handle higher order internal models

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Predictive Functional Control (PFC), belonging to the family of predictive control techniques, has been demonstrated as a powerful algorithm for controlling process plants. The input/output PFC formulation has been a particularly attractive paradigm for industrial processes, with a combination of simplicity and effectiveness. Though its use of a lag plus delay ARX/ARMAX model is justified in many applications, there exists a range of process types which may present difficulties, leading to chattering and/or instability. In this paper, instability of first order PFC is addressed, and solutions to handle higher order and difficult systems are proposed. The input/output PFC formulation is extended to cover the cases of internal models with zero and/or higher order pole dynamics in an ARX/ARMAX form, via a parallel and cascaded model decomposition. Finally, a generic form of PFC, based on elementary outputs, is proposed to handle a wider range of higher order oscillatory and non-minimum phase systems. The range of solutions presented are supported by appropriate examples.
Rocznik
Tom
18
Numer
2
Strony
229-239
Opis fizyczny
Daty
wydano
2008
otrzymano
2007-08-08
poprawiono
2007-12-02
Twórcy
  • Department of Computer Science, University Badji Mokhtar, Annaba, Algeria
  • Department of Electronic Engineering, National University of Ireland, Maynooth, Co. Kildare, Ireland
Bibliografia
  • Åstrom K.J. and Wittenmark B. (1997). Computer-Controlled Systems: Theory and Design, 3rd Ed., Prentice-Hall, Englewood Cliffs, NJ.
  • Clarke D.W., Mohtadi C. and Tuffs P.S. (1987). Generalised predictive control - Part I. The basic algorithm, Automatica 23(2): 137-148.
  • Cutler C.R., and Ramaker P.S. (1980). Dynamic matrix control — A computer algorithm, Proceedings of the Joint Automatic Control Conference, San Francisco, CA, USA, paper No. WP5-B.
  • Houpis C.H and Lamont G.B. (1992). Digital Control Systems, McGraw-Hill, New York.
  • Khadir M.T. (2002). Modelling and predictive control of a milk pasteurisation plant, Ph.D. thesis, Department of Electronic Engineering, NUI, Maynooth, Ireland.
  • Khadir M.T. and Ringwood J. (2003). Higher order predictive functional control, Internal report EE/JVR/01, Department of Electronic Engineering, NUI Maynooth.
  • Królikowski A. and Jerzy D. (2001). Self tuning generalised predictive control with input constraints, International Journal of Applied Mathematics and Computer Science 11(2): 459-479.
  • Kowalczuk Z. and Suchomski P. (1999). Analytical design of stable continuous time generalised predictive control, International Journal of Applied Mathematics and Computer Science 9(1): 53-100.
  • Maciejowski J.M. (2002). Predictive Control with Constraints, Prentice Hall, London.
  • Moore B.C. (1981). Principal component analysis in linear systems: Controlability, observability, and model reduction, IEEE Transactions on Automatic Control 26(1): 17-32.
  • Morari M. and Lee J.H. (2000). Model predictive control: Past, present and future, Computers and Chemical Engineering 23(4): 667-682.
  • Richalet J., Raul A., Testud J.L., and Papo J. (1976). Algorithmic control of industrial processes, Proceedings of the 4-th IFAC Symposium on Identification and System Parameters Estimation, Tbilissi, URSS, pp. 1119-1167.
  • Richalet J., Raul A., Testud J.L. and Papon J. (1978). Model predictive heuristic control: Application to industrial processes, Automatica 14(5): 413-428.
  • Richalet J. (1993). Pratique de la commande predictive, Hermès, Paris.
  • Richalet, J. (1998). La commande predictive, Techniques de l'Ingenieur Traite Mesure et Control, R7 423, pp. 1-17.
  • Rossiter J.A. and Richalet J. (2001a). Predictive functional control of unstable processes, Internal report 807, Department of Automatic Control and Systems Engineering, Sheffield University, UK.
  • Rossiter J.A. and Richalet J. (2001b). Realigned models for prediction in MPC: A good thing or not? Proceedings of Advanced Process Control 6, New York, UK, pp. 63-70.
  • Rossiter J.A. (2001). Stable predictive for unstable independent models, Internal report 812, Department of Automatic Control and Systems Engineering, Sheffield University, UK.
  • Rossiter, J.A., and Richalet, J. (2002). Handling constraints with predictive functional control of unstable processes, Proceedings of the American Control Conference, Anchorage, Alaska, AK, pp. 4746-4751.
  • Scattolini R., De Nicolao G. and Magni L. (1999). Some issues in the design of predictive control, International Journal of Applied Mathematics and Computer Science 9(1): pp. 924.
  • Skrjank I. and Matko D. (2000). Predictive functional control based on fuzzy model for heat-exchanger pilot plant, IEEE Transactions on Fuzzy Systems 8(6): 705-712.
  • Tatjewski P. (2007). Advanced Control of Industrial Processes: Structures and Algorithms, Springer, London.
  • Qin S.J. and Badgwell T.A. (2003). A survey of industrial model predictive control technology, Control Engineering Practice 11(7): 733-767.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-amcv18i2p229bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.