Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | 18 | 1 | 41-47
Tytuł artykułu

Local correlation and entropy maps as tools for detecting defects in industrial images

Treść / Zawartość
Warianty tytułu
Języki publikacji
The aim of this paper is to propose two methods of detecting defects in industrial products by an analysis of gray level images with low contrast between the defects and their background. An additional difficulty is the high nonuniformity of the background in different parts of the same image. The first method is based on correlating subimages with a nondefective reference subimage and searching for pixels with low correlation. To speed up calculations, correlations are replaced by a map of locally computed inner products. The second approach does not require a reference subimage and is based on estimating local entropies and searching for areas with maximum entropy. A nonparametric estimator of local entropy is also proposed, together with its realization as a bank of RBF neural networks. The performance of both methods is illustrated with an industrial image.
Opis fizyczny
  • Institute of Computer Engineering, Control and Robotics, Wrocław University of Technology, ul. Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Altmann J. and Reitbock H.J.P. (1984). A fast correlation method for scale and translation invariant pattern recognition, IEEE Transactions an Pattern Analysis and Machine Intelligence 6(1): 46-57.
  • Beirlant J., Dudewicz E., Gyorfi L., van der Meulen EC (1997). Nonparametric entropy estimation: An overview, International Journal of Mathematical and Statistical Sciences 6(1): 17-39.
  • Bishop C.M. 1995. Neural Networks for Pattern Recognition, Oxford Press.
  • Brink A. D. and Pendock N. E. (1996). Minimum cross-entropy threshold selection, Pattern Recognition 29(1): 179-188.
  • Dong P., Bilbro G.L. and Mo-Yuen Chow (2006). Implementation of artificial neural network for real time applications using field programmable analog arrays, Procedings of the International Joint Conference on Neural Networks, Vancouver, BC, Canada, pp. 1518-1524.
  • Faugeras O. (1993). Three-Dimensional Computer Vision, MIT Press, Cambridge.
  • Forsyth D.A. and Ponce J. (2003). Computer Vision: Modern Approach, Prentice Hall, Upper Saddle River, NJ.
  • Goshtasby A., Gage S. H. and Bartolic J. F. (1984). A two-stage cross-correlation approach to template matching, IEEE Transactions on Pattern Analysis and Machine Intelligence 6(3): 374-378.
  • Haykin S. (1999). Neural Networks. A Comprehensive Foundation, 2nd Ed. Prentice Hall, Upper Saddle River, NJ.
  • Hero A.O. and Michel O.J.J. (1999). Asymptotic theory of greedy approximations to minimal-point random graphs, IEEE Transactions on Information Theory 45(6): 1921-1938.
  • Kittler J., Illingworth J. and Foglein J. (1985). Threshold selection based on a simple image statistic, Computer Vision, Graphics, and Image Processing 30(2): pp. 125-147.
  • Maher J., Mc Ginley B., Rocke P. and Morgan F. (2006). Intrinsic hardware evolution of neural networks in reconfigurable analogue and digital devices, Proceedings of 14th Annual Symposium on Field-Programmable Custom Computing Machines FCCM‘ 06, Napa, USA, pp. 321-322.
  • Mokkadem A. (1989). Estimation of the entropy and information of absolutely continuous random variables, IEEE Transactions on Information Theory 35(1): 193-196.
  • Otsu N. (1979). A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man and Cybernetics 9(1): 62-66.
  • Pal N.R. (1996). On minimum cross-entropy thresholding, Pattern Recognition 29(4): 575-580.
  • Ritter G.X. and Wilson J.N. (2001). Handbook of Computer Vision Algorithms in Image Algebra, 2nd Ed., CRC Press, Boca Raton, FL.
  • Pratt W.K. (2001). Digital Image Processing: PIKS Inside, 3rd Ed., John Wiley and Sons, New York.
  • Sezgin M. and Sankur B. (2004). Survey over image thresholding techniques and quantitative performance evaluation, Journal of Electronic Imaging 13(1): 146-168.
  • Tsai D., Lin Ch., and Chen J. (2003). The evolution of normalized cross correlation for defect detection, Pattern Recognition Letters 24(15): 2525-2535.
  • Zhu S.C., Wu Y. and Mumford D. (1997). Minimax entropy principle and its application to texture modeling, Neural Computation 9(8): 1627-1660.
  • Zhu S.C., Wu Y. Mumford D. (1998). Filters, random fields and maximum entropy (FRAME): Towards a unified theory for texture modeling, International Journal of Computer Vision 27(2): 107-126 .
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.