Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2007 | 17 | 3 | 335-349

Tytuł artykułu

Hermite spline interpolation on patches for parallelly solving the Vlasov-Poisson equation

Treść / Zawartość

Warianty tytułu

Języki publikacji



This work is devoted to the numerical simulation of the Vlasov equation using a phase space grid. In contrast to Particle-In-Cell (PIC) methods, which are known to be noisy, we propose a semi-Lagrangian-type method to discretize the Vlasov equation in the two-dimensional phase space. As this kind of method requires a huge computational effort, one has to carry out the simulations on parallel machines. For this purpose, we present a method using patches decomposing the phase domain, each patch being devoted to a processor. Some Hermite boundary conditions allow for the reconstruction of a good approximation of the global solution. Several numerical results demonstrate the accuracy and the good scalability of the method with up to 64 processors. This work is a part of the CALVI project.








Opis fizyczny




  • INRIA Lorraine, CALVI, France
  • INRIA Futurs, Scalapplix, France
  • IRMA Strasbourg, Strasbourg, France


  • Bermejo R. (1991): Analysis of an algorithm for the Galerkin-characteristic method. Numerische Mathematik, Vol. 60, pp. 163-194.
  • Besse N. and Sonnendrucker E. (2003): Semi-Lagrangian schemes for the Vlasov equation on an unstructured mesh of phase space. Journal of Computational Physics, Vol. 191, pp. 341-376.
  • Birdsall C. K. and Langdon A. B.: Plasma Physics via Computer Simulation. Bristol: Institute of Physics Publishing.
  • Bouchut F., Golse F. and Pulvirenti M. (2000): Kinetic Equations and Asymptotic Theory. Paris: Gauthier-Villars.
  • DeBoor C. (1978): A Practical Guide to Splines. New-York: Springer.
  • Campos-Pinto M. and Merhenberger M. (2004): Adaptive Numerical Resolution of the Vlasov Equation.
  • Cheng C. Z. and Knorr G. (1976): The integration of the Vlasov equation in configuration space. Journal of Computational Physics, Vol. 22, p. 330.
  • Coulaud O., Sonnendrucker E., Dillon E., Bertrand P. and Ghizzo A. (1999): Parallelization of semi-Lagrangian Vlasov codes. Journal of Plasma Physics, Vol. 61, pp. 435-448.
  • Feix M. R., Bertrand P. and Ghizzo A. (1994): Title? In: Kinetic Theory and Computing, (B. Perthame, Ed.).
  • Filbet F., Sonnendrucker E. and Bertrand P. (2001): Conservative numerical schemes for the Vlasov equation. Journal of Computational Physics, Vol. 172, pp. 166-187.
  • Filbet F. and Sonnendrucker E. (2003): Comparison of Eulerian Vlasov solvers. Computer Physics Communications, Vol. 151, pp. 247-266.
  • Filbet F. and Violard E. (2002): Parallelization of a Vlasov Solver by Communication Overlapping. Proceedings PDPTA.
  • Glassey R. T. (1996): The Cauchy Problem in Kinetic Theory. Philadelphia, PA: SIAM.
  • Ghizzo A., Bertrand P., Begue M. L., Johnston T. W. and Shoucri M. (1996): A Hilbert-Vlasov code for the study of high-frequency plasma beatwave accelerator. IEEE Transactions on Plasma Science, Vol. 24.
  • Ghizzo A., Bertrand P., Shoucri M., Johnston T. W., Filjakow E. and Feix M. R. (1990): A Vlasov code for the numerical simulation of stimulated Raman scattering. Journal of Computational Physis, Vol. 90, pp. 431-457.
  • Grandgirard V., Brunetti M., Bertrand P., Besse N., Garbet N., Ghendrih P., Manfredi G., Sarrazin Y., Sauter O., Sonnendrucker E., Vaclavik J. and Villard L. (2006): A drift-kinetic semi-Lagrangian 4D code for ion turbulence simulation. Journal of Computational Physics, Vol. 217, pp. 395-423.
  • Gutnic M., Haefele M., Paun I. and Sonnendrucker E. (2004): Vlasov simulation on an adaptive phase space grid. Computer Physical Communications, Vol. 164, pp. 214-219.
  • Hammerlin G. and Hoffmann K. H. (1991): Numerical Mathematics, New-York: Springer.
  • Kim C. C. and Parker S. E. (2000): Massively parallel three-dimensional toroidal gyrokinetic flux-tube turbulence simulation. Journal of Computational Physics, Vol. 161, pp. 589-604.
  • McKinstrie C. J., Giacone R. E. and Startsev E. A. (1999): Accurate formulas for the Landau damping rates of electrostatic waves. Physics of Plasmas, Vol. 6, pp. 463-466.
  • Manfredi G. (1997): Long time behaviour of strong linear Landau damping. Physical Review Letters, Vol. 79.
  • Shoucri M. and Knorr G. (1974): Numerical integration of the Vlasov equation. Journal of Computational Physics, Vol. 14, pp. 84-92.
  • Sonnendrucker E., Filbet F., Friedman A., Oudet E. and Vay J. L. (2004): Vlasov simulation of beams on a moving phase space grid. Computer Physics Communications, Vol. 164, pp. 390-395.
  • Sonnendrucker E., Roche J., Bertrand P. and Ghizzo A. (1999): The semi-Lagrangian method for the numerical resolution of the Vlasov equations. Journal of Computational Physics, Vol. 149, pp. 201-220.
  • Staniforth A. and Cote J. (1991): Semi-Lagrangian integration schemes for atmospheric models - A review. Monthly Weather Review, Vol. 119, pp. 2206-2223

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.