The problem of computing minimal realizations of a singular system decomposed into a standard dynamical system and a static system of a given improper transfer matrix is formulated and solved. A new notion of the minimal dynamical-static realization is introduced. It is shown that there always exists a minimal dynamical-static realization of a given improper transfer matrix. A procedure for the computation of a minimal dynamical-static realization for a given improper transfer matrix is proposed and illustrated by a numerical example.
Faculty of Electrical Engineering, Bialystok Technical University, ul. Wiejska 45D, 15-351 Białystok, Poland
Bibliografia
Christodoulou M.A. and Mertzios B.G. (1985): Realization of singular systems via Markov parameters. - Int. J. Contr., Vol.42, No.6, pp. 1433-1441.
Kaczorek T. (1992): Linear Control Systems, Vol.1. - New York: Wiley.
Kailath T. (1980): Linear Systems. - Englewood Cliffs: Prentice-Hall
Roman J.R. and Bullock T.E. (1975): Minimal partial realization in canonical form. - IEEE Trans. Automat. Contr., Vol.AC-20, No.4, pp.529-533.
Sinha Naresk K. (1975): Minimal realization of transfer function matrices: A comparative study of different methods. - Int. J. Contr., Vol.22, No.5, pp.627-639.
Wolovich W.A. and Guidorsi R. (1977): A general algorithm for determining state-space representations. - Automatica, Vol.13, pp.295-199
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-amcv17i1p23bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.