PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2005 | 15 | 2 | 197-203
Tytuł artykułu

On the two-step iterative method of solving frictional contact problems in elasticity

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A class of contact problems with friction in elastostatics is considered. Under a certain restriction on the friction coefficient, the convergence of the two-step iterative method proposed by P.D. Panagiotopoulos is proved. Its applicability is discussed and compared with two other iterative methods, and the computed results are presented.
Rocznik
Tom
15
Numer
2
Strony
197-203
Opis fizyczny
Daty
wydano
2005
otrzymano
2004-02-19
poprawiono
2004-07-14
Twórcy
  • Institute of Mechanics, Bulgarian Academy of Sciences, ''Acad. G. Bonchev'' street, block 4, 11-13 Sofia, Bulgaria
  • Department of Civil Engineering, Democritus University of Thrace, 67-100 Xanti, Greece
Bibliografia
  • Andersson L.-E. and Klarbring A. (2001): A review of the theory of static and quasi-static frictional contact problems in elasticity. - Phil. Trans. Roy. Soc.London, Vol. A 359, No. 1789, pp. 2519-2539.
  • Angelov T.A. and Liolios A.A. (2004): An iterative solution procedure for Winkler-type contact problems with friction. -Z. Angew. Math. Mech., Vol. 84, No. 2, pp. 136-143.
  • Cvapvatinva A.R. and Cocu M. (1991): Internal approximation of quasi-variational inequalities. - Num. Math., Vol. 59, No. 4, pp. 385-398.
  • Cocu M. (1984): Existence of solutions of Signorini problems with friction.- Int. J. Eng. Sci., Vol. 22, No. 10, pp. 567-575.
  • Demkowicz L. and Oden J.T. (1982): On some existence and uniqueness results in contact problems with nonlocal friction. - Nonlin. Anal., Vol. TMA 6,pp. 1075-1093.
  • Duvaut G. and Lions J.-L. (1976): Inequalities in Mechanics and Physics.- Berlin: Springer.
  • Glowinski R. (1984): Numerical Methods for Nonlinear Variational Problems.- New York: Springer.
  • Hlavaček I., Haslinger J., Nečas J. and Lovišek J. (1988): Solution of Variational Inequalities in Mechanics. - New York: Springer.
  • Kikuchi N. and Oden J.T. (1988): Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods. -Philadelphia: SIAM.
  • Klarbring A., Mikelič A. and Shillor M. (1989): On friction problems with normal compliance. - Nonlin. Anal., Vol. TMA 13, No. 8,pp. 935-955.
  • Lee C.Y. and Oden J.T. (1993a): Theory and approximation of quasistatic frictional contact problems. - Comp. Math. Appl. Mech.Eng., Vol. 106, No. 3, pp. 407-429.
  • Lee C.Y. and Oden J.T. (1993b): A priori error estimation of hp-finite element approximations of frictional contact problems with normal compliance. - Int. J.Eng. Sci., Vol. 31, No. 6, pp. 927-952.
  • Nečas J., Jarušek J. and Haslinger J. (1980): On the solutionof the variational inequality to the Signorini problem with small friction.- Bull. Unione Math. Italiana, Vol. 17-B(5), pp. 796-811.
  • Oden J.T. and Carey G.F. (1984): Finite Elements: Special Problems in Solid Mechanics, Vol. 5, - Englewood Cliffs, N.J.: Prentice-Hall.
  • Panagiotopoulos P.D. (1975): A Nonlinear Programming Approach to the Unilateral Contact and Friction Boundary Value Problem in the Theory of Elasticity. - Ing. Archiv., Vol. 44, No. 6, pp. 421-432.
  • Panagiotopoulos P.D. (1985): Inequality Problems in Mechanics and Applications. Convex and Nonconvex Energy Functions. - Boston: Birkhuser.
  • Rabier P.J. and Oden J.T. (1987): Solution to Signorini-like contact problemsthrough interface models. I. Preliminaries and formulation of a variational equality. - Nonlin. Anal., Vol. TMA 11, No. 12, pp. 1325-1350.
  • Rabier P.J. and Oden J.T. (1988): Solution to Signorini-like contact problemsthrough interface models. II. Existence and uniqueness theorems. -Nonlin. Anal., Vol. TMA 12, No. 1, pp. 1-17.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-amcv15i2p197bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.