Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2005 | 15 | 1 | 89-97
Tytuł artykułu

Control of a team of mobile robots based on non-cooperative equilibria with partial coordination

Treść / Zawartość
Warianty tytułu
Języki publikacji
In this work we present an application of the concept of non-cooperative game equilibria to the design of a collision free movement of a team of mobile robots in a dynamic environment. We propose the solution to the problem of feasible control synthesis, based on a partially centralized sensory system. The control strategy based on the concept of non-cooperative game equilibria is well known in the literature. It is highly efficient through phases where the solution is unique. However, even in simple navigation problems, it happens that multiple equilibria occur, which incurs a problem for control synthesis and may lead to erroneous results. In this paper we present a solution to this problem based on the partial centralization idea. The coordinator module is incorporated into the system and becomes active when multiple equilibria are detected. The coordination method includes a 'fair arbiter' for the selection of an appropriate equilibrium solution. Simulation studies of the proposed methodology were carried out for 2, 3 and 5 robots, and their results are presented.
Słowa kluczowe
Opis fizyczny
  • Department of Automatic Control, Silesian University of Technology, ul. Akademicka 16, 44-100 Gliwice, Poland
  • Basar M. and Olsder G.J. (1982): Dynamic Noncooperative Game Theory. - London: Academic Press.
  • Belta C. and Kumar V. (2004): Optimal motion generation for groups of robots: A geometric approach. - ASME J. Mech. Des., Vol. 126, No. 1, pp. 63-70.
  • Esposito J. and Kumar V. (2000): Closed loop motion plans for mobile robots. - Proc. IEEE Int. Conf. Robotics and Automation, ICRA, San Francisco, CA, pp. 1020-1025.
  • Ge S.S and Cui Y.J. (2002): Dynamic motion planning for mobile robots using potential field method. - Autonomous Robot., Vol. 13, No. 3, pp. 207-222.
  • Gerkey B. and Mataric M.J. (2002): Sold!: Auction methods for multi-robot coordination. - IEEE Trans. Robot. Automat., Vol. 18, No. 5, p. 758-786.
  • Golfarelli M. (1998): A game theory approach to coordination in MAS. - Proc. 13-th European Conf. Artificial Intelligence, Brighton, UK, pp. 610-611.
  • Harsanyi J.C. and Selten R. (1998): A General Theory of Equilibrium Selection in Games. - Massachusetts: MIT Press.
  • Koren Y. and Borenstein J: (1991): Potential Field Methods and their Inherent Limitations for Mobile Robot Navigation. - Proc. IEEE Conf. Robotics and Automation, Sacramento, CA, pp. 1398-1404.
  • LaValle S. (2000): Robot motion planning: A game-theoretic foundation. - Algorithmica, Vol. 26, No. 3, pp. 430-465.
  • Li Q. and Payandeh S. (2001): On coordination of robotic agents based on game theory. -(private communication).
  • Masterton-Gibbons M. (2001): An Introduction to Game-theoretic Modelling. - Student Mathematical Library, Vol. II, American Mathematical Society.
  • Maynard Smith J. (1982): Evolution and the Theory of Games. -Cambridge: Cambridge University Press.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.