Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2005 | 15 | 1 | 73-88

Tytuł artykułu

Uncertainty models of vision sensors in mobile robot positioning

Treść / Zawartość

Warianty tytułu

Języki publikacji



This paper discusses how uncertainty models of vision-based positioning sensors can be used to support the planning and optimization of positioning actions for mobile robots. Two sensor types are considered: a global vision with overhead cameras, and an on-board camera observing artificial landmarks. The developed sensor models are applied to optimize robot positioning actions in a distributed system of mobile robots and monitoring sensors, and to plan the sequence of actions for a robot cooperating with the external infrastructure supporting its navigation.








Opis fizyczny




  • Institute of Control and Information Engineering, Poznan University of Technology, ul. Piotrowo 3A, 60-965 Poznań, Poland


  • Adam A., Rivlin E. and Shimshoni I. (2001): Computing the sensory uncertainty field of a vision-based localization sensor. - IEEE Trans. Robot. Automat., Vol. 17, No. 3, pp. 258-267.
  • Ahuja R., Magnanti T. and Orlin J. (1993): Network Flows: Theory, Algorithms and Applications. - Englewood Cliffs: Prentice Hall.
  • Bączyk R. and Skrzypczyński P. (2001): Mobile robot localization by means of an overhead camera. - Proc. Conf. Automation 2001, Warsaw, Poland, pp. 220-229.
  • Bączyk R. (2001): Methods of correcting image distortions in alocalization system of a mobile robot. - Proc. 7-th Nat. Conf. Robotics, Wrocław, Poland, pp. 185-194.
  • Bączyk R., Kasiński A. and Skrzypczyński P. (2003): Vision-based mobilerobot localization with simple artificial landmarks. - Prep. 7th IFAC Symp. Robot Control, Wrocław, Poland, pp. 217-222.
  • Bączyk R. and Skrzypczyński P. (2003): A framework for vision-based positioningin a distributed robotic system. - Proc. Europ. Conf. Mobile Robots, Warsaw, Poland, pp. 153-158.
  • Brzykcy G., Martinek J., Meissner A. and Skrzypczyński P. (2001): Multi-agent blackboard architecture for a mobile robot. - Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Maui, USA, pp. 2369-2374.
  • Castellanos J. and Tardòs J. (1999): Mobile Robot Localization and Map Building. A Multisensor Fusion Approach. - Dordrecht: Kluwer.
  • Coulouris G., Dollimore J. and Kindberg T. (1996): Distributed Systems. Concepts and Design. - Boston: Addison Wesley.
  • Crowley J. L. (1996): Mathematical foundations of navigation and perception for an autonomous mobile robot, In: Reasoning with Uncertainty in Robotics (L. Dorst, Ed.).- Berlin: Springer.
  • DeSouza G. and Kak A. C. (2002): Vision for mobile robot navigation: A survey.- IEEE Trans. Pattern Anal. Mach. Intell., Vol. 24, No. 2, pp. 237-267.
  • Feng L., Borenstein J. and Everett H. (1996): 'Where am I ?' Sensors and methods for autonomous mobile robot positioning. - Tech. Rep., Univ. of Michigan.
  • Haralick R. M. (1996): Propagating covariance in computer vision.- Int. J. Pattern Recog. Artif. Intell., Vol. 10, No. 5, pp. 561-572.
  • Heikkila J. (2000): Geometric camera calibration using circular control points.- IEEE Trans. Pattern Anal. Mach. Intell., Vol. 22, No. 10, pp. 1066-1077.
  • Ishiguro H. (1997): Distributed vision system: A perceptual information infrastructure for robot navigation. - Proc. Int. Joint Conf. Artif. Intell., Nagoya, Japan, pp. 36-43.
  • Jain R., Kasturi R. and Schunck B. (1995): Machine Vision. -Singapore: McGraw-Hill.
  • Kasiński A. and Bączyk R. (2001): Robust landmark recognition with application to navigation. - Proc. Conf. Computer Recognition Systems (KOSYR), Wrocław, Poland, pp. 401-407.
  • Kasiński A. and Hamdy A. (2003): Efficient illumination suppression in a sequence by motion detection combined with homomorphic filtering. -Proc. 27th Workshop AAPR Vision in a Dynamic World, Laxenburg, Austria, pp. 19-26.
  • Kasiński A. and Skrzypczyński P. (1998): Cooperative perception andworld-model maintenance in mobile navigation tasks, In: Distributed Autonomous Robotic Systems 3 (T. Luth et al., Eds.).- Berlin: Springer, pp. 173-182.
  • Kasiński A. and Skrzypczyński P. (2001): Perception network for the teamof indoor mobile robots.: Concept, architecture, implementation.- Eng. Appl. Artif. Intell., Vol. 14, No. 2, pp. 125-137.
  • Kasiński A. and Skrzypczyński P. (2002): Communication mechanism in a distributed system of mobile robots, In: Distributed Autonomous Robotic Systems 5 (H. Asama et al., Eds.). - Tokyo: Springer, pp. 51-60.
  • Kruse E., Gutsche R. and Wahl F. (1998): Intelligent mobile robot guidance intime varying environments by using a global monitoring system. - Proc. IFAC Symp. Intell. Autonomous Vehicles, Madrid, Spain, pp. 509-514.
  • Kuipers F. A., Korkmaz T., Krunz M. and Van Mieghem P. (2002): A review of constraint-based routing algorithms. - Tech. Rep., Delft Univ. Technol.
  • Lambert A. and Fraichard T. (2000): Landmark-based safe path planning for car-like robots. - IEEE Int. Conf. Robot. Automat., San Francisco, pp. 2046-2051.
  • Lazanas A. and Latombe J.-C. (1995): Motion planning with uncertainty: A landmark approach. - Artif. Intell., Vol. 76, No 1-2, pp. 287-317.
  • Lorenz D. and Raz D. (2001): A simple efficient approximation scheme for the restricted shortest path problem. - Oper. Res. Lett., Vol. 28, No. 5, pp. 213-219.
  • Latombe J.-C. (1991): Robot Motion Planning. - Dordrecht: Kluwer.
  • Miura J. and Shirai Y. (1993): An uncertainty model of stereo vision and its application to vision-motion planning of robot. - Proc. Int. Joint Conf. Artif. Intell., Chambery, France, pp. 1618-1623.
  • Moon I., Miura J. and Shirai Y. (1999): On-line viewpoint and motion planning for efficient visual navigation under uncertainty. - Robot. Autonom. Syst., Vol. 28, No 2, pp. 237-248.
  • Muller J. (1996): The Design of Intelligent Agents: A Layered Approach.- Berlin: Springer.
  • Shah S. and Aggarwal J. (1994): A simple calibration procedure for fish-eye(high distortion) lens camera. - IEEE Int. Conf. Robot. Automat., San Diego, pp. 3422-3427.
  • Skrzypczyński P. (2004a): A team of mobile robots and monitoring sensors - From concept to experiment. - Adv. Robot., Vol. 18, No. 6, pp. 583-610.
  • Skrzypczyński P. (2004b): Using sensor uncertainty models to optimize the robot positioning actions, In: Intelligent Autonomous Systems 8 (F. Groen et al., Eds.). - Amsterdam, IOS Press, pp. 299-308.
  • Smith R. and Cheeseman P. (1987): On the estimation and representation of spatial uncertainty. - Int. J. Robot. Res., Vol. 5, No. 4, pp. 56-68.
  • Smith R. G. (1980): The contract net protocol: High-level communication and control in a distributed problem solver. - IEEE Trans. Comput., Vol. 29, No. 12, pp. 1104-1113.
  • Sysło M. M., Deo N. and Kowalik J. S. (1983): Discrete Optimization Algorithms with Pascal Programs. - Englewood Cliffs: Prentice-Hall.
  • Takahashi O. and Schilling R. J. (1989): Motion planning in a plane using generalized Voronoi diagrams. - IEEE Trans. Robot. Automat., Vol. 5, No. 2, pp. 143-150.
  • Takeda H., Facchinetti C. and Latombe J.-C. (1994): Planning the motions of a mobile robot in a sensory uncertainty field. - IEEE Trans. Pattern Anal. Mach. Intell., Vol. 16, No. 10, pp. 1002-1017.

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.