Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2005 | 15 | 1 | 63-72
Tytuł artykułu

Range identification for a perspective dynamic system with a single homogeneous observation

Treść / Zawartość
Warianty tytułu
Języki publikacji
Perspective problems arise in machine vision when using a camera to observe the scene. Essential problems include the identification of unknown states and/or unknown parameters from perspective observations. Range identification is used to estimate the states/positions of a moving object with known motion parameters. Range estimation has been discussed in the literature using nonlinear observers with full homogeneous observations derived from the image plane. In this paper, the same range identification problem is discussed with a single homogeneous observation using nonlinear observers. Our simulation results verify the convergence of the observers when their observability conditions are satisfied. sm
Opis fizyczny
  • Center for Self-Organizing and Intelligent Systems (CSOIS), Department of Electrical and Computer Engineering, Utah State University (USU), 4160 Old Main Hill, Logan, UT 84322-4160, USA
  • Center for Self-Organizing and Intelligent Systems (CSOIS), Department of Electrical and Computer Engineering, Utah State University (USU), 4160 Old Main Hill, Logan, UT 84322-4160, USA
  • Research and Technology Development Center Johns Hopkins University Applied Physics Laboratory, M/S 2-236 11100, Johns Hopkins Road, Laurel, MD 20723-6099, USA
  • Chen X. and Kano H. (2002): A new state observer for perspective systems. - IEEE Trans. Automat.Contr., Vol. 47, No. 4, pp. 658-663.
  • Chiuso A., Favaro P., Jin H. and Soatto S. (2002): Structure from motion causally integrated over time. - IEEE Trans. Pattern Anal. Mach. Intell.,Vol. 24, No. 4, pp. 523-535.
  • Cho H.R., Lee K.M. and Lee S.U. (2001): A new robust 3D motion estimation under perspective projection. - Proc. IEEE Int. Conf. Image Processing, Thessaloniki, Greece, pp. 660-663.
  • Dixon W.E., Fang Y., Dawson D.M. and Flynn T.J. (2003): Range identification for perspective vision systems. - IEEE Trans. Automat. Contr., Vol. 48, No. 12, pp. 2232-2238.
  • Ghosh B.K., Jankovic M. and Wu Y.T. (1994): Perspective problems in system theory and its application to machine vision - J. Math. Syst. Estim. Contr., Vol. 4, No. 1, pp. 3-38.
  • Hernandez C.N., Banks S.P. and Aldeen M. (2003): Observer design for nonlinear systems using linear approximations. - IMA J. Math. Contr. Inf., Vol. 20, pp. 359-370.
  • Jankovic M. and Ghosh B.K. (1995): Visually guided ranging from observations of points, lines and curves via an identifier based nonlinear observer. - Syst. Contr. Lett., Vol. 25, pp. 63-73.
  • Khalil H.K. (2002): Nonlinear Systems. - New Jersey: Prentice Hall.
  • Ma L. (2004): Vision-Based Measurements for Dynamic Systems and Control.- Ph.D. thesis, Utah State University.
  • Ma L., Chen Y. and Moore K.L. (2004): Range identification for perspective dynamic system with single homogeneous observation. - Proc. IEEE Int. Conf. s Robot. and Automat., New Orleans, pp. 5207-5211.
  • Morgan A.P. and Narendra K.S. (1977): On the stability of nonautonomous differential equations dx/dt = (A + B(t))x with skew symmetric matrix B(t).- SIAM J. Contr., Vol. 15, No. 1, pp. 163-176.
  • Papadimitriou T., Diamantaras K.I., Strintzis M.G. and Roumeliotis M. (2000): Robust estimation of rigid-body 3-D motion parameters based on point correspondences. - IEEE Trans. Circ. Syst. Video Technol., Vol. 10, No. 4, pp. 541-549.
  • Soatto S., Frezza R. and Perona P. (1996): Motion estimation via dynamic vision.- IEEE Trans. Automat. Contr., Vol. 41, No. 3, pp. 393-413.
  • Tomas-Rodriguez M. and Banks S.P. (2003): Linear approximations to nonlinear dynamical systems with applications to stability and spectral theory.- IMA J. Math. Contr. Inf., Vol. 20, pp. 89-103.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.