Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2004 | 14 | 3 | 289-316
Tytuł artykułu

Phenotypic evolution with a mutation based on symmetric α-stable distributions

Treść / Zawartość
Warianty tytułu
Języki publikacji
Multidimensional Symmetric α-Stable (SαS) mutations are applied to phenotypic evolutionary algorithms. Such mutations are characterized by non-spherical symmetry for α<2 and the fact that the most probable distance of mutated points is not in a close neighborhood of the origin, but at a certain distance from it. It is the so-called surrounding effect (Obuchowicz, 2001b; 2003b). For α=2, the SαS mutation reduces to the Gaussian one, and in the case of α=1, the Cauchy mutation is obtained. The exploration and exploitation abilities of evolutionary algorithms, using SαS mutations for different α, are analyzed by a set of simulation experiments. The obtained results prove the important influence of the surrounding effect of symmetric α-stable mutations on both the abilities considered.
Opis fizyczny
  • Institute of Control and Computation Engineering University of Zielona Góra, ul. Podgórna 50, 65-246 Zielona Góra, Poland
  • Institute of Control and Computation Engineering University of Zielona Góra, ul. Podgórna 50, 65-246 Zielona Góra, Poland
  • Back T. and Schwefel H.-P. (1993): An overview of evolutionary computation. - Evol. Comput., Vol. 1, No. 1, pp. 1-23.
  • Back T., Fogel D.B. and Michalewicz Z. (Eds.) (1997): Handbook of Evolutionary Computation. - Oxford: Oxford University Press, NY.
  • Chambers J.M., Mallows C.L. and Stuck B.W. (1976): A method for simulating stable random variables. — J. Amer. Statist. Assoc., Vol. 71, No. 354, pp. 340–344.
  • Fang K.-T., Kotz S. and Ng S. (1990): Symmetric Multivariate and Related Distributions. - London: Chapman and Hall.
  • Fogel L.J., Owens A.J. and Walsh A.J. (1966): Artificial Intelligence through Simulated Evolution. - New York: Wiley.
  • Fogel D.B., Fogel L.J. and Atmar J.W. (1991): Meta-evolutionary programming. - Proc. 25th Asilomar Conf. Signals, Systems and Computers, San Jose, pp. 540-545.
  • Fogel D.B. (1992): An analysis of evolutionary programming. - Proc. 1st Annual Conf. Evolutionary Programming, LA Jolla, CA: Evolutionary Programming Society, pp. 43-51.
  • Fogel D.B. (1994): An introduction to simulated evolutionary computation. - IEEE Trans. Neural Netw., Vol. 5, No. 1, pp. 3-14.
  • Galar R. (1985): Handicapped individua in evolutionary processes. - Biol. Cybern., Vol. 51, pp. 1-9.
  • Galar R. (1989): Evolutionary search with soft selection. - Biol. Cybern., Vol. 60, pp. 357-364.
  • Gutowski M. (2001): Lévy flights as an underlying mechanism for a global optimization algorithm. - Proc. 5th Conf. Evolutionary Algorithms and Global Optimization, Jastrzębia Góra, Poland, pp. 79-86.
  • Kanter M. (1975): Stable densities with change of scale and total variation inqualities. - Ann. Probab., Vol. 3, No. 4, pp. 687-707.
  • Kappler C. (1996): Are evolutionary algorithms improved by large mutation, In: Problem Solving from Nature (PPSN) IV (H.-M. Voigt, W. Ebeling, I. Rechenberg and H.-P. Schwefel, Eds.). - Berlin: Springer, pp. 388-397.
  • Lévy C. (1925): Calcul des Probabilites. - Paris: Gauthier Villars.
  • Michalewicz Z. (1996): Genetic Algorithms + Data Structures = Evolution Programs. - Berlin: Springer.
  • Nolan J.P. (2003): Stable Distributions. Models for Heavy Tailed Data. - Berlin: Springer.
  • Obuchowicz A. (2001a): On the true nature of the multidimensional Gaussian mutation. — In: Artificial Neural Networks and Genetic Algorithms (V. Kurkova, N.C. Steel, R. Neruda and M. Karny, Eds.). — Vienna: Springer, pp.248–251.
  • Obuchowicz A. (2001b): Mutli-dimensional Gaussian and Cauchy mutations, In: Intelligent Information Systems (M. Kłopotek, M. Michalewicz, and S.T. Wierzchoń, Eds.). - Heidelberg: Physica-Verlag, pp. 133-142.
  • Obuchowicz A. (2003a): Population in an ecological niche: Simulation of natural exploration. - Bull. Polish Acad. Sci., Tech. Sci., Vol. 51, No. 1, pp. 59-104.
  • Obuchowicz A. (2003b): Multidimensional mutations in evolutionary algorithms based on real-valued representation. - Int. J. Syst. Sci., Vol. 34, No. 7, pp. 469-483.
  • Obuchowicz A. (2003c): Evolutionary Algorithms in Global Optimization and Dynamic System Diagnosis. - Zielona Góra: Lubuskie Scientific Society.
  • Rechenberg I. (1965): Cybernetic solution path of an experimental problem. - Roy. Aircr. Establ., Libr. Transl.1122, Farnborough, Hants., UK.
  • Rudolph G. (1997): Local convergence rates of simple evolutionary algorithms with Cauchy mutations. - IEEE Trans. Evolut. Comput., Vol. 1, No. 4, pp. 249-258.
  • Schwefel H.-P. (1981): Numerical Optimization of Computer Models. - Chichester: Wiley.
  • Samorodnitsky G. and Taqqu M.S. (1994): Stable Non-Gaussian Random Processes. - New York: Chapman and Hall.
  • Shu A. and Hartley R. (1987): Fast simulated annaeling. - Phys. Lett. A, Vol. 122, Nos. 34, pp. 605-614.
  • Weron R. (1996): Correction to: On the Chambers-Mallows-Stuck method for simulating skewed stable random variables. - Res. Rep., Wrocław University of Technology, Poland.
  • Weron R. (2001): Levy-stable distributions revisited: tail index > 2 does not exclude the Levy-stable regime. - Int. J. Modern Phys. C, Vol. 12, No. 2, pp. 209-223.
  • Yao X. and Liu Y. (1996): Fast evolutionary programming, In: Evolutionary Programming V: Proc. 5th Annual Conference on Evolutionary Programming (L.J. Fogel, P.J. Angeline, and T. Back, Eds.). - Cambridge, MA: MIT Press, pp. 419-429.
  • Yao X. and Liu Y. (1997): Fast evolutionary strategies. - Contr. Cybern., Vol. 26, No. 3, pp. 467-496.
  • Yao X. and Liu Y. (1999): Evolutionary programming made faster. - IEEE Trans. Evolut. Comput., Vol. 3, No. 2, pp. 82-102.
  • Zolotariev A. (1986): One-Dimensional Stable Distributions. - Providence: American Mathematical Society.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.