PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2004 | 14 | 1 | 33-41
Tytuł artykułu

Closed-form expressions for the approximation of arclength parameterization for Bézier curves

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In applications such as CNC machining, highway and railway design, manufacturing industry and animation, there is a need to systematically generate sets of reference points with prescribed arclengths along parametric curves, with sufficient accuracy and real-time performance. Thus, mechanisms to produce a parameter set that yields the coordinates of the reference points along the curve Q(t) = {x(t), y(t)} are sought. Arclength parameterizable expressions usually yield a parameter set that is necessary to generate reference points. However, for typical design curves, such expressions are not often available in closed form. It is thus desirable to find efficient ways to compensate for this lack of arclength parameterization. In this paper, several methods for approximating arclength parameterizations are studied. These methods are examined for both accuracy and real-time processing requirements. The application of generating reference points uniformly spaced along the paths of several curves is chosen for the illustration and comparison between the presented methods.
Rocznik
Tom
14
Numer
1
Strony
33-41
Opis fizyczny
Daty
wydano
2004
otrzymano
2003-01-21
poprawiono
2003-12-07
(nieznana)
2004-02-17
Twórcy
autor
  • Department of Computer Science, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
Bibliografia
  • Burchard H.G., Ayers J.A., Frey W.H. and Sapidis N.S. (1994): Approximating with aesthetic constraints, In: Designing Fair Curves and Surfaces: Shape Quality in Geometric Modeling and Computer-Aided Design (N.S.Sapidis, Ed.). - Philadelphia: SIAM, pp.3-28.
  • Davis P.J. (1963): Interpolation and Approximation. - New York: Blaisdell Publishing Company.
  • Farin G. (1993): Curves and Surfaces for Computer-Aided Geometric Design: A Practical Guide. - Boston: Academic Press.
  • Farouki R.T. (1992): Pythagorean-hodograph curves in practical Use}, In: Geometry Processing for Design and Manufacturing, (R.E. Barnhill, Ed.). - Philadelphia: SIAM, pp.3-33.
  • Farouki R.T. (1997): Optimal Parameterizations. - Computer Aided Geometric Design, Vol.14, No.2, pp.153-168.
  • Farouki R.T. and Sakkalis T. (1991): Pythagorean hodographs. - IBM J. Res. Development, Vol.34, No.5, pp.736-752.
  • Farouki R.T. and Shah S. (1996): Real-time CNC interpolators for Pythagorean-hodograph curves. - Computer Aided Geometric Design, Vol.13, No.7, pp.583-600.
  • Foley J.D., Van Dam A., Feiner S.K. and Hughes J.F. (1992): Computer Graphics: Principles and Practice. - Reading: Addison Wesley.
  • Guggenheimer H.W. (1963): Differential Geometry. - New York: McGraw-Hill, pp.15-17.
  • Madi M.M. (1996): Arclength Approximation for Reference-Point Generation. - M.Sc. Thesis, Dept. of Computer Science, University of Manitoba.
  • Sharpe R.J. and Thorne R.W. (1982): Numerical method for extracting an arclength parameterization from parametric curves. - Computer-Aided Design, Vol.14, No.2, pp. 79-81.
  • Su B-Q. and Liu D-Y. (1989): Computational Geometry: Curve and Surface Modeling. - Boston: Academic Press.
  • Young E.C. (1993): Vector and Tensor Analysis. - New York: Marcel Dekker.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-amcv14i1p33bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.