The problem of an infinite eigenvalue assignment by an output feedback is considered. Necessary and sufficient conditions for the existence of a solution are established. A procedure for the computation of the output-feedback gain matrix is given and illustrated with a numerical example.
Institute of Control and Industrial Electronics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warszawa, Poland
Bibliografia
Dai L. (1989): Singular Control Systems. - Berlin: Springer.
Delin Chu and D.W.C Ho (1999): Infinite eigenvalue assignment for singular systems. - Linear Algebra and Its Applications, Vol. 298, No. 1, pp. 21-37.
Kaczorek T. (2002): Polynomial approach to pole shifting to infinity in singular systems by feedbacks. - Bull. Pol. Acad. Sci. Techn. Sci., Vol. 50, No. 2, pp. 134-144.
Kaczorek T. (2000): Reduced-order perfect and standard observers for singular continuous-time linear systems. - Mach. Intell. Robot. Contr., Vol. 2, No. 3, pp. 93-98.
Kaczorek T. (2002): Perfect functional observers of singular continuous-time linear systems. - Mach. Intell. Robot. Contr., Vol. 4, No. 1, pp. 77-82.
Kaczorek T. (1993): Linear Control Systems, Vols. 1 and 2.- New York: Wiley.
Kaczorek T. (2003): The relationship between infinite eigenvalue assignment for singular systems and solvability of polynomial matrix equations. - Int. J. Appl. Math. Comp. Sci., Vol. 13, No. 2, pp. 161-167.
Kaliath T. (1980): Linear Systems. - Englewood Cliffs: Prentice Hall.
Kučera V. (1981): Analysis and Design of Discrete Linear Control Systems. - Prague: Academia.
Wonham W.M. (1979): Linear Multivariable Control: A Geometric Approach. - New York: Springer.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-amcv14i1p19bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.