Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2003 | 13 | 1 | 87-99
Tytuł artykułu

Linear repetitive process control theory applied to a physical example

Treść / Zawartość
Warianty tytułu
Języki publikacji
In the case of linear dynamics, repetitive processes are a distinct class of 2D linear systems with uses in areas ranging from long-wall coal cutting and metal rolling operations to iterative learning control schemes. The main feature which makes them distinct from other classes of 2D linear systems is that information propagation in one of the two independent directions only occurs over a finite duration. This, in turn, means that a distinct systems theory must be developed for them for onward translation into efficient routinely applicable controller design algorithms for applications domains. In this paper, we introduce the dynamics of these processes by outlining the development of models for various metal rolling operations. These models are then used to illustrate some recent results on the development of a comprehensive control theory for these processes.
Opis fizyczny
  • Institute of Control and Computation Engineering, University of Zielona Góra, 65-246 Zielona Góra, ul. Podgórna 50, Poland
  • Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield S1 3JD, U.K.
  • Institute of Control and Computation Engineering, University of Zielona Góra, 65-246 Zielona Góra, ul. Podgórna 50, Poland
  • Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield S1 3JD, U.K.
  • Agathoklis P. and Foda S. (1989): Stability and the matrix Lyapunov equation for delay differential systems. - Int. J. Contr., Vol. 49, No. 2, pp. 417-432.
  • Agathoklis P., Jury E.I. and Mansour M. (1982): The margin of stability of 2-D linear systems. - IEEE Trans. Acoust. Speech Signal Process., Vol. ASSP-30, No. 6, pp. 869-873.
  • Amann N., Owens D.H. and Rogers E. (1998): Predictive optimal iterative learning control. - Int. J. Contr., Vol. 69, No. 2, pp. 203-226.
  • Barnett S. (1983): Polynomials and Linear Control Systems. -New York: Marcel Dekker.
  • Boyd S., Ghaoui L.E., Feron E. and Balakrishnan V. (1994): Linear Matrix Inequalities in Systems and Control Theory. - Philadelphia: SIAM.
  • Byrnes C.I. Spong M.W. and Tarn T.J. (1984): A several complex variable approach to feedback stabilization of linear delay-differential systems. - Math. Syst.Theory, Vol. 17, pp. 97-133.
  • Edwards J.B. (1974): Stability problems in the control of multipass processes. - Proc. IEE, Vol. 121, No. 11, pp. 1425-1431.
  • Foda S. and Agathoklis P. (1989): Stability of differential multipass processes. - Electronics Lett., Vol. 24, No. 16, pp. 1016.
  • Fornasini E. and Marchesini G. (1978): Doubly-indexed dynamical systems: state space models and structural properties. - Math. Syst. Theory, Vol. 12, pp. 59-72.
  • Gałkowski K., Rogers E., Gramacki A., Gramacki J. and Owens D.H. (2001): Stability and dynamic boundary condition decoupling analysis for a class of 2-D discrete linear systems. - Proc. IEE, Vol. 148, No. 3, pp. 126-131.
  • Gałkowski K., Paszke W., Sulikowski B., Rogers E. and Owens D.H. (2002a): LMI based stability analysis and controller design for a class of 2D continuous-discrete linear systems. - Proc. Amer. Contr. Conf., Anchorage, pp. 29-34.
  • Gałkowski K., Rogers E., Xu S., Lam J. and Owens D.H. (2002b): LMIs-a fundamental tool in analysis and controller design for discrete linear repetitive processes. - IEEE Trans. Circ. Syst., Part 1, Fund. Theory Appl., Vol. 49, No. 6, pp. 768-778.
  • Hale J. (1977): Theory of Functional Differential Equations. -New York: Springer.
  • Herz D., Jury E.I. and Zeheb E. (1984): Simplified analytic stability test for systems with commensurate delays. - Proc. IEE, Part D, Contr. Theory Applic., Vol. 131, No. 1, pp. 52-56.
  • Kaczorek T. (1995): Generalized 2-D continuous-discrete linear systems with delay. - Appl. Math. Comput.Sci., Vol. 5, No. 3, pp. 439-454.
  • Roberts P.D. (2000): Stability analysis of iterative optimal control algorithms modelled as linear repetitive processes. - Proc. IEE, Part D, Vol. 147, No. 3, pp. 229-238.
  • Roesser R.P. (1975): A discrete state space modelfor linear image processing. - IEEE Trans. Automat. Control, Vol. AC-20, No. 1, pp. 1-10.
  • Rogers E. and Owens D.H. (1992): Stability Analysisfor Linear Repetitive Processes. - Berlin: Springer.
  • Rogers E., Gałkowski K. and Owens D.H. (2003): Control Systems Theory and Applications for Linear Repetitive Processes. - Berlin: Springer (to appear).
  • Smyth K.J. (1992): Computer Aided Analysis for Linear Repetitive Processes. - Ph.D. Thesis, Department of Mechanical Engineering, University of Strathclyde.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.