PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2002 | 12 | 4 | 559-569
Tytuł artykułu

Generating quasigroups for cryptographic applications

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A method of generating a practically unlimited number of quasigroups of a (theoretically) arbitrary order using the computer algebra system Maple 7 is presented. This problem is crucial to cryptography and its solution permits to implement practical quasigroup-based endomorphic cryptosystems. The order of a quasigroup usually equals the number of characters of the alphabet used for recording both the plaintext and the ciphertext. From the practical viewpoint, the most important quasigroups are of order 256, suitable for a fast software encryption of messages written down in the universal ASCII code. That is exactly what this paper provides: fast and easy ways of generating quasigroups of order up to 256 and a little more.
Słowa kluczowe
Rocznik
Tom
12
Numer
4
Strony
559-569
Opis fizyczny
Daty
wydano
2002
otrzymano
2001-04-26
poprawiono
2002-01-21
(nieznana)
2002-03-01
Twórcy
  • University of Zielona Góra, Institute of Control and Computation Engineering, ul. Podgórna 50, 65-246 Zielona Góra, Poland
Bibliografia
  • Dénes J. and Keedwell A.D. (1974): Latin Squares and Their Applications. - Budapest: Akademiai Kiado.
  • Dénes J. and Keedwell A.D. (1999): Some applications of non-associative algebraic systems incryptology. - Techn. Rep. 9903, Dept. Math. Stat., University of Surrey.
  • Jacobson M.T. and Matthews P. (1996): Generating uniformly distributed random latin squares. - J. Combinat.Desig., Vol. 4, No. 6, pp. 405-437.
  • Kościelny C. (1995): Spurious Galois fields. - Appl. Math. Comp. Sci., Vol. 5, No. 1, pp. 169-188.
  • Kościelny C. (1996): A method of constructing quasigroup-based stream-ciphers. - Appl. Math. Comp. Sci., Vol. 6, No. 1, pp. 109-121.
  • Kościelny C. (1997): NLPN sequences over GF(q).- Quasigr. Related Syst., No. 4, pp. 89-102.
  • Kościelny C. and Mullen G.L. (1999): A quasigroup-based public-key cryptosystem. - Int. J. Appl. Math. Comp. Sci., Vol. 9, No. 4, pp. 955-963.
  • Laywine C.F. and Mullen G.L. (1998): Discrete Mathematics Using Latin Squares.- New York: Wiley.
  • McKay B. and Rogoyski E. (1995): Latin Squares od Order 10. - Electr. J. Combinat., Vol. 2, No. 3.
  • Ritter T. (1998): Latin squares: A literature survey-Research comments from ciphers by Ritter. -Available at http://www.io.com/~ritter/RES/LATSQR.HTM
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-amcv12i4p559bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.