Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.

Zapraszamy na https://bibliotekanauki.pl

Zapraszamy na https://bibliotekanauki.pl

307-324

wydano

2002

otrzymano

2002-03-01

poprawiono

2002-06-01

autor

- Computer Science Division and the Electronics Research Laboratory, Department of EECS University of California, Berkeley, CA 94720-1776 USA

- Berenji H.R. (1994): Fuzzy reinforcement learning and dynamic programming, In: Fuzzy Logic in Artificial Intelligence (A.L. Ralescu, Ed.). — Proc. IJCAI’93 Workshop, Berlin: Springer-Verlag, pp. 1–9.
- Black M. (1963): Reasoning with loose concepts. — Dialog 2, pp. 1–12.
- Bosch P. (1978): Vagueness, ambiguity and all the rest, In: Sprachstruktur, Individuum und Gesselschaft (M. Van de Velde and W. Vandeweghe, Eds.).—Tubingen: Niemeyer.
- Bowen J., Lai R. and Bahler D. (1992a): Fuzzy semantics and fuzzy constraint networks. — Proc. 1st IEEE Conf. Fuzzy Systems, San Francisco, pp. 1009–1016.
- Bowen J., Lai R. and Bahler D. (1992b): Lexical imprecision in fuzzy constraint networks. — Proc. Nat. Conf. Artificial Intelligence, pp. 616–620.
- Cresswell M.J. (1973): Logic and Languages. — London: Methuen.
- Dubois D., Fargier H. and Prade H. (1993): The calculus of fuzzy restrictions as a basis for flexible constraint satisfaction. — Proc. 2nd IEEE Int. Conf. Fuzzy Systems, San Francisco, pp. 1131–1136.
- Dubois D., Fargier H. and Prade H. (1994): Propagation and satisfaction of flexible constraints, In: Fuzzy Sets, Neural Networks, and Soft Computing (R.R. Yager, L.A. Zadeh, Eds.).—New York: Von Nostrand Reinhold, pp. 166–187.
- Dubois D., Fargier H. and Prade H. (1996): Possibility theory in constraint satisfaction problems: Handling priority, preference and uncertainty. — Appl. Intell. J., Vol. 6, No. 4, pp. 287–309.
- Freuder E.C. and Snow P. (1990): Improved relaxation and search methods for approximate constraint satisfaction with a maximin criterion. — Proc. 8th Biennial Conf. Canadian Society for Computational Studies of Intelligence, Ontario, pp. 227–230.
- Goguen J.A. (1969): The logic of inexact concepts. — Synthese 19, pp. 325–373.
- Hobbs J.R. (1978): Making computation sense of Montague’s intensional logic. —Artif. Intell., Vol. 9, pp. 287–306.
- Katai O., Matsubara S., Masuichi H., Ida M., et al. (1992): Synergetic computation for constraint satisfaction problems involving continuous and fuzzy variables by using Occam, In: Transputer/Occam, (S. Noguchi and H. Umeo, Eds.). — Proc. 4th Transputer/Occam Int. Conf., Amsterdam: IOS Press, pp. 146–160.
- Kaufmann A. and Gupta M.M. (1985): Introduction to Fuzzy Arithmetic: Theory and Applications. — New York: Von Nostrand.
- Klir G. and Yuan B. (1995): Fuzzy Sets and Fuzzy Logic.—New Jersey: Prentice Hall.
- Lano K. (1991): A constraint-based fuzzy inference system. — Proc. 5th Portuguese Conf. Artificial Intelligence, EPIA’91 (P. Barahona, L.M. Pereira, and A. Porto, Eds.), Berlin: Springer-Verlag, pp. 45–59.
- Lodwick W.A. (1990): Analysis of structure in fuzzy linear programs. —Fuzzy Sets Syst., Vol. 38, No. 1, pp. 15–26.
- Mamdani E.H. and Gaines B.R., Eds. (1981): Fuzzy Reasoning and its Applications. —London.
- Mares M. (1994): Computation Over Fuzzy Quantities.—Boca Raton: CRC Press.
- Novak V. (1991): Fuzzy logic, fuzzy sets, and natural languages. —Int. J. General Syst., Vol. 20, No. 1, pp. 83–97.
- Novak V., Ramik M., Cerny M. and Nekola J., Eds. (1992): Fuzzy Approach to Reasoning and Decision-Making. — Boston: Kluwer.
- Oshan M.S., Saad O.M. and Hassan A.G. (1995): On the solution of fuzzy multiobjective integer linear programming problems with a parametric study. — Adv. Modell. Anal. A, Vol. 24, No. 2, pp. 49–64.
- Partee B. (1976): Montague Grammar.—New York: Academic Press.
- Pedrycz W. and Gomide F. (1998): Introduction to Fuzzy Sets. — Cambridge: MIT Press, pp. 38–40.
- Qi G. and Friedrich G. (1992): Extending constraint satisfaction problem solving in structural design.—5th Int. Conf. Industrial and Engineering Applications of Artificial Intelligence and Expert Systems, IEA/AIE-92 (F. Belli and F.J. Radermacher, Eds.), Berlin: Springer-Verlag, pp. 341– 350.
- Rasiowa H. and Marek M. (1989): On reaching consensus by groups of intelligent agents, In: Methodologies for Intelligent Systems (Z.W. Ras, Ed.). — Amsterdam: North- Holland, pp. 234–243.
- Rosenfeld A., Hummel R.A. and Zucker S.W. (1976): Scene labeling by relaxation operations.—IEEE Trans. Syst. Man Cybern., Vol. 6, pp. 420–433.
- Sakawa M., Sawada K. and Inuiguchi M. (1995): A fuzzy satisficing method for large-scale linear programming problems with block angular structure.—Europ. J. Oper. Res., Vol. 81, No. 2, pp. 399–409.
- Shafer G. (1976): A Mathematical Theory of Evidence. — Princeton: Princeton University Press.
- Tong S.C. (1994): Interval number and fuzzy number linear programming. — Adv. Modell. Anal. A, Vol. 20, No. 2, pp. 51–56.
- Vallée R. (1995): Cognition et Systeme. — Paris: l’Interdisciplinaire Systeme(s).
- Yager R.R. (1989): Some extensions of constraint propagation of label sets.—Int. J. Approx. Reas., Vol. 3, pp. 417–435.
- Zadeh L.A. (1961): From circuit theory to system theory. — Proc. IRE, Vol. 50, pp. 856–865.
- Zadeh L.A. (1965): Fuzzy sets. — Inf. Control, Vol. 8, pp. 338– 353.
- Zadeh L.A. (1968): Probability measures of fuzzy events. — J. Math. Anal. Appl., Vol. 23, pp. 421–427.
- Zadeh L.A. (1972): A fuzzy-set-theoretic interpretation of linguistic hedges. — J. Cybern., Vol. 2, pp. 4–34.
- Zadeh L.A. (1973): Outline of a new approach to the analysis of complex system and decision processes. — IEEE Trans. Syst. Man Cybern., Vol. SMC–3, pp. 28–44.
- Zadeh L.A. (1974): On the analysis of large scale systems. — Systems Approaches and Environment Problems (H. Gottinger, Ed.), Gottingen: Vandenhoeck and Ruprecht, pp. 23–37.
- Zadeh L.A. (1975a): Calculus of fuzzy restrictions, In: Fuzzy Sets and Their Applications to Cognitive and Decision Processes, (L.A. Zadeh, K.S. Fu, M. Shimura, Eds.). — New York: Academic Press, pp. 1–39.
- Zadeh L.A. (1975b): The concept of a linguistic variable and its application to approximate reasoning. — Part I: Inf. Sci., Vol. 8, pp. 199–249; Part II: Inf. Sci., Vol. 8, pp. 301–357; Part III: Inf. Sci., Vol. 9, pp. 43–80.
- Zadeh L.A. (1976): A fuzzy-algorithmic approach to the definition of complex or imprecise concepts. — Int. J. Man- Mach. Stud., Vol. 8, pp. 249–291.
- Zadeh L.A. (1978a): Fuzzy sets as a basis for a theory of possibility. — Fuzzy Sets Syst., Vol. 1, pp. 3–28.
- Zadeh L.A. (1978b): PRUF – A meaning representation language for natural languages. — Int. J. Man-Mach. Stud., Vol. 10, pp. 395–460.
- Zadeh L.A. (1979a): Fuzzy sets and information granularity, In: Advances in Fuzzy Set Theory and Applications (M. Gupta, R.Ragade and R. Yager, Eds.). — Amsterdam: North-Holland, pp. 3–18.
- Zadeh L.A. (1979b): A theory of approximate reasoning. — Mach. Intell., Vol. 9 (J. Hayes, D. Michie and L.I. Mikulich, Eds.), New York: Halstead Press, pp. 149–194.
- Zadeh L.A. (1981): Test-score semantics for natural languages and meaning representation via PRUF. — Empirical Semantics (B. Rieger, W. Germany, Eds.), Brockmeyer, pp. 281–349. Also Technical Report Memorandum 246, AI Center, SRI International, Menlo Park, CA.
- Zadeh L.A. (1982): Test-score semantics for natural languages. —Proc. 9-th Int. Conf. Computational Linguistics, Prague, pp. 425–430.
- Zadeh L.A. (1984): Syllogistic reasoning in fuzzy logic and its application to reasoning with dispositions. — Proc. Int. Symp. Multiple-Valued Logic, Winnipeg, Canada, pp. 148–153.
- Zadeh L.A. (1986): Outline of a computational approach to meaning and knowledge representation based on a concept of a generalized assignment statement. — Proc. Int. Seminar on Artificial Intelligence and Man-Machine Systems (M. Thoma and A. Wyner, Eds.), Heidelberg: Springer- Verlag, pp. 198–211.
- Zadeh L.A. (1994): Fuzzy logic, neural networks and soft computing. —Comm. ACM, Vol. 37, No. 3, pp. 77–84.
- Zadeh L.A. (1996a): Fuzzy logic and the calculi of fuzzy rules and fuzzy graphs: A precis. — Multiple Valued Logic 1, Gordon and Breach Science Publishers, pp. 1–38.
- Zadeh L.A. (1996b): Fuzzy logic = Computing with words. — IEEE Trans. Fuzzy Syst., Vol. 4, pp. 103–111.
- Zadeh L.A. (1997): Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. — Fuzzy Sets Syst., Vol. 90, pp. 111–127.
- Zadeh L.A. (1998): Maximizing Sets and Fuzzy Markoff Algorithms. — IEEE Trans. Syst. Man Cybern., Part C: Appli. Rev., Vol. 28, pp. 9–15.

bwmeta1.element.bwnjournal-article-amcv12i3p307bwm