Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2002 | 12 | 2 | 209-219

Tytuł artykułu

Fuzzy logic gain scheduling for non-linear servo tracking

Treść / Zawartość

Warianty tytułu

Języki publikacji



This paper proposes the use of gain scheduling as a method of controlling a servo system with hard non-linear elements. The servo controls two elements of a tracker mounted on a ship at sea. There is stiction at the zero velocity point and non-linear friction against the motion of each tracker axis. A dual feedback loop control structure is employed. Fuzzy logic is used to provide smoothly varying non-linear scheduling functions to map the velocity of the servo relevant to the deck of the ship onto the rate loop controller parameters. Consideration is given to the use of a derivative signal as a secondary input to the fuzzy inference system. Results are presented which demonstrate that this method of controlling the servo system gives a dramatic improvement over the traditional linear control methodology for low velocity tracking performance. A linear PID controller is used in the outer loop and its design is also given some consideration.








Opis fizyczny




  • School of Electronic, Electrical and Computer Engineering University of Birmingham, Birmingham B 15 2TT, UK
  • School of Electronic, Electrical and Computer Engineering University of Birmingham, Birmingham B 15 2TT, UK


  • Brdyś M.A. and Sim W.L. (1995): Fuzzy logic supervision of adaptive generalised predictive control of induction motor. - Proc. 6-th Europ. Conf. Power Electronics and Applications, Sevilla, Spain, Vol. 3, pp. 3586-3591.
  • Brdyś M.A., Quevedo J. and Sim W.L. (1995): Fuzzy logic supervisory control of induction motor under full range of operating conditions. - Proc. 5-th Congress ESTLF'95, Murcia, Spain, pp. 185-191.
  • Canudas de Wit C. and Lichinsky P. (1997): Adaptive friction compensation with partially known dynamic friction model. - Int. J. Adapt. Contr. Signal Process., Vol. 11, No. 4, pp. 65-80.
  • Canudas de Wit C., Olsson H., Astrom K.J. and Lichinsky (1995): A new model for control of systems with friction. - IEEE Trans. Automat. Contr., Vol. 40, No. 3, pp. 419-425.
  • Garnell P. and East D.J. (1997): Guided Weapon Control Systems. - New York: Pergamon Press.
  • Hunt K.J. and Johansen T.A. (1997): Design and analysis of gain-scheduled local controller networks. - Int. J. Contr., Vol. 66, No. 6, pp. 619-651.
  • Lichinsky C., Canudas de Wit C. and Morel G. (1999): Friction compensation for an industrial hydraulic robot. - IEEE Trans. Contr.Syst. Mag., Vol. 19, No. 1, pp. 25-32.
  • Passino K.M. and Yurkovich S. (1998): Fuzzy Control. - Menlo Park, California: Addison-Wesley.
  • Shamma J.S. and Athans M. (1990): Analysis of gain scheduled control for non-linear plants. - IEEE Trans. Automat. Contr., Vol. 35, No. 8, pp. 897-907.
  • Singer R.A. and Behnke K.W. (1970): Real-time tracking filter evaluation and selection for tactical applications. - IEEE Trans. Aerospace Electr. Syst., Vol. 7, No. 1, pp. 100-110.
  • Wang Li-Xin (1994): Adaptive Fuzzy Systems And Control: Design and Stability Analysis. - Englewood Cliffs: Prentice Hall.

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.