PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2001 | 11 | 6 | 1285-1310
Tytuł artykułu

Matrix quadratic equations column/row reduced factorizations and an inertia theorem for matrix polynomials

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
It is shown that a certain Bezout operator provides a bijective correspondence between the solutions of the matrix quadratic equation and factorizatons of a certain matrix polynomial (which is a specification of a Popov-type function) into a product of row and column reduced polynomials. Special attention is paid to the symmetric case, i.e. to the Algebraic Riccati Equation. In particular, it is shown that extremal solutions of such equations correspond to spectral factorizations of . The proof of these results depends heavily on a new inertia theorem for matrix polynomials which is also one of the main results in this paper.
Rocznik
Tom
11
Numer
6
Strony
1285-1310
Opis fizyczny
Daty
wydano
2001
Twórcy
  • Department of Mathematics, Technion-Israel Institute of Technology, Haifa 32000, Israel
autor
  • Department of Mathematics, Technion-Israel Institute of Technology, Haifa 32000, Israel
Bibliografia
  • Ando T. (1988): Matrix Qudratic Equations. — Sapporo, Japan: Hokkaido University Press.
  • Anderson B.D.O. and Jury E.I. (1976): Generalized Bezoutian and Sylvester matrices in multivariable linear control. — IEEE Trans. Automat. Contr., Vol.AC-21, pp.551–556.
  • Ball J.A., Groenewald G., Kaashoek M.A. and Kim J. (1994): Column reduced rational matrix functions with given null-pole data in the complex plane. — Lin. Alg. Appl., Vol.203/204, pp.67–110.
  • Bart H., Gohberg I. and Kaashoek M.A. (1979): Minimal Factorization of Matrix and Operator Functions. — Basel: Birkhäuser.
  • Carlson D. and Shneider H. (1963): Inertia theorem for matrices: The semidefinite case. — Math. Anal. Appl., Vol.6, pp.430–446.
  • Dym H. (1991): A Hermite theorem for matrix polynomials, In: Operator Theory: Advances and Applications (H. Bart, I. Gohberg and M.A. Kaashoek, Eds), pp.191–214.
  • Dym H. and Young N.Y. (1990): A Shur-Cohn theorem for matrix polynomials. — Proc. Edinburgh Math. Soc., Vol.33, pp.337–366.
  • Gohberg I., Kaashoek M.A., Lerer L. and Rodman L. (1981): Common multiples and common divisors of matrix polynomials, I.: Spectral method. — Indiana Univ. Math. J., Vol.30, pp.321–356.
  • Gohberg I., Kaashoek M.A., Lerer L. and Rodman L. (1984): Minimal divisors of rational matrix functions with prescribed zero and pole structure, In: Operator theory: Advances and Applications. — Basel: Birkhäuser, pp.241–275.
  • Gohberg I., Kaashoek M.A. and Lancaster P. (1988): General theory of regular matrix polynomials and band Toeplitz operators. — Int. Eqns. Oper. Theory, Vol.6, pp.776–882.
  • Gohberg I., Lancaster P. and Rodman L. (1982): Matrix Polynomials. — New York: Academic Press.
  • Gohberg I., Lancaster P. and Rodman L. (1983): Matrices and Indefinite Scalar Products. — Basel: Birkhiäuser.
  • Gohberg I., Lerer L. and Rodman L. (1980): On factorization indices and completely decomposable matrix polynomials. — Tech. Rep., Tel-Aviv University, pp.47–80.
  • Gomez G. and Lerer L. (1994): Generalized Bezoutian for analytic operator functions and inversion of stuctured operators, In: System and Networks: Mathematical Theory and Applications (U. Helmke, R. Mennicken and J. Saures, Eds.), Academie Verlag, pp.691– 696.
  • Haimovici J. and Lerer L. (1995): Bezout operators for analytic operator functions I: A gen-eral concept of Bezout operators. — Int. Eqns. Oper. Theory, Vol.21, pp.33–70.
  • Haimovici J. and Lerer L. (2001): Bezout operators for analytic operator functions II. — In preparation.
  • Hearon J.Z. (1977): Nonsingular solutions of T A − T B = C. — Lin. Alg. Appl., Vol.16, pp.57–65.
  • Ionescu V. and Weiss M. (1993): Continuous and discrete-time Riccati theory: A Popov- function approach. — Lin. Appl., Vol.193, pp.173–209.
  • Kailath T. (1980): Linear systems. — Engelwood Cliffs, N.J.: Prentice Hall.
  • Karelin I. and Lerer L. (2001): Generalized Bezoutian, factorization of rational matrix functions and matrix quadratic equations. — Oper. Theory Adv. Appl., Vol.122, pp.303–321.
  • Karelin I., Lerer L. and Ran A.C.M. (2001): J-symmetric factorizations and algebraic Riccati equation. — Oper. Theory: Adv. Appl., Vol.124, pp.319–360.
  • Lerer L. (1989): The matrix quadratic equations and factorization of matrix polynomials. — Oper. Theory: Adv. Appl., Vol.40, pp.279–324.
  • Lancaster P. and Rodman L. (1995): Algebraic Riccati Equations. — Oxford: Oxford University Press.
  • Lerer L. and Ran A.C.M. (1996): J-pseudo spectral and J-inner-pseudo-outer factorizations for matrix polynomials. — Int. Eqns. Oper. Theory, Vol.29, pp.23–51.
  • Lerer L. and Rodman L. (1996a): Common zero structure of rational matrix functions. — J. Funct. Anal., Vol.136, pp.1–38.
  • Lerer L. and Rodman L. (1996b): Bezoutians of rational matrix functions. — J. Funct. Anal., Vol.141, pp.1–36.
  • Lerer L. and Rodman L. (1996c): Symmetric factorizations and locations of zeroes of rational matrix functions. — Lin. Multilin. Alg., Vol.40, pp.259–281.
  • Lerer L. and Rodman L. (1999): Bezoutian of rational matrix functions, matrix equations and factorizations. — Lin. Alg. Appl., Vol.302–303, pp.105–133.
  • Lerer L. and Tismenetsky M. (1982): The Bezoutian and the eigenvalue separation problem. — Int. Eqns. Oper. Theory, Vol.5, pp.386–445.
  • Rodman L. (1980): On extremal solutions of the algebraic Riccati equations, In: A.M.S. Lectures on Applied Math., Vol.18, pp.311–327.
  • Rodman L. (1983): Maximal invariant neutral subspaces and an application to the algebraic Riccati equation. — Manuscript Math., Vol.43, pp.1–12.
  • Shayman M.A. (1983): Geometry of the algebraic Riccati equations. I, II. — SIAM J. Contr., Vol.21, pp.375–394 and 395–409.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-amcv11i6p1285bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.