PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2001 | 11 | 6 | 1231-1248
Tytuł artykułu

Exact controllability of an elastic membrane coupled with a potential fluid

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We consider the problem of boundary control of an elastic system with coupling to a potential equation. The potential equation represents the linearized motions of an incompressible inviscid fluid in a cavity bounded in part by an elastic membrane. Sufficient control is placed on a portion of the elastic membrane to insure that the uncoupled membrane is exactly controllable. The main result is that if the density of the fluid is sufficiently small, then the coupled system is exactly controllable.
Rocznik
Tom
11
Numer
6
Strony
1231-1248
Opis fizyczny
Daty
wydano
2001
Twórcy
autor
  • Department of Mathematics, Iowa State University, Ames, Iowa 50011, U.S.A.
Bibliografia
  • Avalos G. (1996): The exponential stability of coupled hyperbolic/parabolic system arising in structural acoustics. — Abstr. Appl. Anal., Vol.1, No.2, pp.203–219.
  • Banks H.T., Silcox R.J. and Smith R.C. (1993): The modeling and control of acoustic/structure interaction problems via peizoceramic actuators: 2-d numerical examples. — ASME J. Vibr. Acoust., Vol.2, pp.343–390.
  • Bardos C., Lebeau G. and Rauch J. (1992): Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary. — SIAM J. Contr., Vol.30, No.5, pp.1024–1065.
  • Conca C., Osses A. and Planchard J. (1998): Asympotic analysis relating spectral models in fluid-solid vibrations. — SIAM J. Num. Anal., Vol.35, No.3, pp.1020–1048.
  • Galdi G.D., (1994): An Introduction to the Mathematical Theory of Navier-Stokes Equations, Vol.I. — New York: Springer.
  • Hansen S.W. and Lyashenko A. (1997): Exact controllability of a beam in an incompressible inviscid fluid. — Disc. Cont. Dyn. Syst., Vol.3., No.1, pp.59–78.
  • Lighthill J. (1981):, Energy flow in the cochlea. — J. Fluid Mech., Vol.106, pp.149–213.
  • Lions J.-L. (1988): Exact controllability, stabilization and perturbations for distributed systems. — SIAM Rev. Vol.30, No.1, pp.1–67.
  • Lions J.-L. and Zuazua E. (1995): Approximate controllability of hydro-elastic coupled system. — ESAIM: Contr. Optim. Calc. Var., Vol.1, pp.1–15.
  • Micu S. and Zuazua E. (1997): Boundary controllability of a linear hybrid system arising in the control of noise. — SIAM J. Contr. Optim., Vol.35, No.5, pp.1614–1637.
  • Necas J. (1967): Les Méthodes directes en théorie des équations elliptiques. — Paris: Masson.
  • Osses A. and Puel J.-P. (1998): Boundary controllability of a stationary stokes system with linear convection observed on an interior curve. — J. Optim. Theory Appl., Vol.99, No.1, pp.201–234.
  • Osses A. and Puel J.-P. (1999): Approximate controllability for a linear model of fluid structure interaction. — ESAIM Contr. Optim. Calc. Var., Vol.4, No.??, pp.497–519.
  • Pazy A. (1983): Semigroups of Linear Operators and Applications and Partial Differential Equations. — New York: Springer-Verlag.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-amcv11i6p1231bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.