PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2001 | 11 | 5 | 1035-1053
Tytuł artykułu

Optimization and pole assignment in control system design

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Some elementary optimization techniques, together with some not so well-known robustness measures and condition numbers, will be utilized in pole assignment. In particular, ''Method 0'' by Kautsky et al. (1985) for optimal selection of vectors is shown to be convergent to a local minimum, with respect to the condition number . This contrasts with the misconception by Kautsky et al. that the method diverges, or the recent discovery by Yang and Tits (1995) that the method converges to stationary points.
Rocznik
Tom
11
Numer
5
Strony
1035-1053
Opis fizyczny
Daty
wydano
2001
Twórcy
autor
  • Department of Mathematics and Statistics, Monash University, Clayton, Victoria 3168, Australia
Bibliografia
  • Andry A.N., Shapiro E.Y. and Chung J.C. (1983): Eigenstructure assignment for linear systems. — IEEE Trans. Aerosp. Electr. Syst., Vol.19, pp.711–729.
  • Bertsekas D.P. (1995): Nonlinear Programming. — Belmont: Athena Scientific.
  • Bhattacharyya S.P. and De Sousa E. (1982): Pole assignment via Sylvester equations. — Syst. Contr. Lett., Vol.1, pp.261–263.
  • Boyd S., El Ghaoui L., Feron E. and Balakrishnan V. (1994): Linear Matrix Inequalities in System and Control Theory. — Philadelphia: SIAM.
  • Brogan W.L. (1974): Applications of a determinant identity to pole-placement and observer problems. — IEEE Trans. Automat. Contr., Vol.19.
  • Byers R. and Nash S.G. (1989): Approaches to robust pole assignment. — Int. J. Contr., Vol.49, pp.97–117.
  • Cavin K.R. and Bhattacharyya S.P. (1982): Robust and well-conditioned eigenstructure assignment via Sylvester’s equation. — Proc. Amer. Contr. Conf..
  • Chu E.K. (1986a): A pole-assignment algorithm for linear state feedback. — Syst. Contr. Lett., Vol.7, pp.289–299.
  • Chu E.K. (1986b): Generalizations of the Bauer-Fike theorems. — Numer. Math., Vol.49, pp.85–91.
  • Chu E.K. (1987): Exclusion theorems and perturbation theory for the generalized eigenvalue problem. — SIAM J. Numer. Anal., Vol.24, pp.1114–1125.
  • Chu E.K. (1988): A controllability condensed form and a state feedback pole assignment algorithm for descriptor systems. — IEEE Trans. Automat. Contr., Vol.33, pp.366–370.
  • Chu E.K. (1993): Approximate pole assignment. — Int. J. Contr., Vol.59, pp.471–484.
  • Chu E.K. (2001a): Optimization and pole assignment in control system design. — Reprint & Preprint Series, Dept. Math. Stat., Monash University.
  • Chu E.K. (2001b): Pole assignment for second-order systems. — Mech. Syst. Signal Process., (to appear).
  • Chu E.K. and Datta B.N. (1996): Numerically robust pole assignment for second-order systems. — Int. J. Contr., Vol.64, pp.1113–1127.
  • Chu E.K. and Li N. (1993): Controllability measures and their computation. — CTAC-91, pp.291–298.
  • Chu E.K. and Li N. (1994): Designing the Hopfield neural network via pole assignment. — Int. J. Syst. Sci., Vol.25, pp.669–681.
  • Cichocki A. and Unbehauen R. (1993): Neural Networks for Optimization and Signal Processing. — London: Wiley.
  • Datta B.N. and Saad Y. (1991): Arnoldi methods for large Sylvester-like observer matrix equations and an associate algorithm for partial pole assignment. — Lin. Alg. Applic., Vol.154–156, pp.225–244.
  • Davidon W.C. (1975): Optimally conditioned optimization algorithms without line searches. — Math. Prog., Vol.9, pp.1–30.
  • Dennis J.E., Jr., and Schnabel R.B. (1983): Numerical Methods for Unconstrained Optimization and Nonlinear Equations. — Englewood Cliffs: Prentice-Hall.
  • Dennis J.E. and Wolkowicz H. (1990): Sizing and least change secant methods. — Tech. Rep., Vol.COOR 90–02, Dept. Combinatorics and Optimization, University of Waterloo, Ontario, 1990.
  • Fahmy M.M. and O’Reilly J. (1982): On eigenstructure assignment in linear multivariable system. — IEEE Trans. Automat. Contr., Vol.27.
  • Fahmy M.M. and O’Reilly J. (1988): Multistage parametric eigenstructure assignment by output feedback. — Int. J. Contr., Vol.48, pp.97–116.
  • Fahmy M.M. and O’Reilly J. (1988): Parametric eigenstructure assignment by output feedback control. — Int. J. Contr., Vol.48, pp.1519–1535.
  • Fletcher R. (1987): Practical Methods of Optimization, 2-nd Ed. — Chichester: Wiley.
  • Golub G.H. and Van Loan C.F. (1989): Matrix Computations, 2-nd Ed. — Baltimore: Johns Hopkins University Press.
  • Gourishanker V. and Ramar K. (1976): Pole assignment with minimum eigenvalue sensitivity to plant variations. — Int. J. Contr., Vol.23, pp.493–504.
  • He C., Laub A. and Mehrmann V. (1995): Placing plenty of poles is pretty. Preposterous. — Vol.SPC 95–17, Forschergruppe “Scientific Parallel Computing”, Fakultät für Mathematik, TU Chemnitz-Zwickau, FRG.
  • Ho D., Lam J., Xu J. and Tam H.K. (1996): Recurrent neural networks for output feedback robust approximate pole assignment. — Res. Rep., Vol.MA–96–08, Faculty of Science and Technology, City University of Hong Kong.
  • Joshi S.M. (1989): Control of Large Flexible Space Structures. — Berlin: Springer.
  • Karmarkar N. (1984): A new polynomial-time algorithm for linear programming. — Combinatorica, Vol.4, pp.373–395.
  • Katti S.K. (1983): Pole assignment in multi-input systems via elementary transformations. — Int. J. Contr., Vol.37, pp.315–347.
  • Kautsky J., Nichols N.K. and Van Dooren P. (1985): Robust pole assignment in linear state feedback. — Int. J. Contr., Vol.41, pp.1129–1155.
  • Kimura H. (1975): Pole assignment by gain output feedback. — IEEE Trans. Automat. Contr., Vol.20, pp.509–516.
  • Kimura H. (1977): A further result on the problem of pole assignment by output feedback. — IEEE Trans. Automat. Contr., Vol.22, pp.458–463.
  • Klein G. and Moore B.C. (1977): Eigenvalue-generalized eigenvector assignment with state feedback. — IEEE Trans. Automat. Contr., Vol.22, pp.140–141.
  • Lam J. and Yan W.Y. (1995): A gradient flow approach to robust pole-assignment problem. — Int. J. Robust Nonlin. Contr., Vol.5, pp.175–185.
  • Marcus M. (1962): An inequality connecting the p-condition number and the determinant. — Numer. Math., Vol.4, pp.350–353.
  • Math Works (1995): MATLAB Version 4 Users’ Guide. — Englewood Cliffs: Prentice Hall.
  • Mayne D. and Murdoch P. (1970): Model control of linear time invariant systems. — Int. J. Contr., Vol.11.
  • Miminis G.S. (1981): Numerical Algorithms for Controllability and Eigenvalue Allocation. — Ph.D. Thesis, School Comp. Sci., McGill University.
  • Miminis G.S. and Paige C.C. (1982a): An algorithm for pole assignment of time invariant multi-input linear systems. — Proc. IEEE Conf. Decision Control, pp.62–67.
  • Miminis G.S. and Paige C.C. (1982b): An algorithm for pole assignment of time-invariant linear systems. — Int. J. Contr., Vol.35, pp.341–354.
  • Miminis G.S. and Paige C.C. (1988): A direct algorithm for pole assignment of time-invariant multi-input linear systems using state feedback. — Automatica, Vol.24.
  • Paige C.C. (1981): Properties of numerical algorithms related to computing controllability. — IEEE Trans. Automat. Contr., Vol.26, pp.130–138.
  • Petkov P.Hr., Christov N.D. and Konstantinov M.M. (1986): A computational algorithm for pole assignment of linear multi-input systems. — IEEE Trans. Automat. Contr., Vol.31, pp.1044–1047.
  • Rosenbrock H.H. (1970): State-Space and Multivariable Theory. — London: Nelson.
  • Saad Y. (1988): Projection and deflation methods for partial pole assignment in linear state feedback. — IEEE Trans. Automat. Contr., Vol.33, pp.290–297.
  • Stewart G.W. and Sun J.G. (1990): Matrix Perturbation Theory. — San Diego: Academic Press.
  • Varga A. (1981a): A Schur method for pole assignment. — IEEE Trans. Automat. Contr., Vol.26, pp.517–519.
  • Varga A. (1981b): Numerical stable algorithm for standard controllability form determination. — Electr. Lett., Vol.17, pp.74–75.
  • Wolkowicz H. (1990): Measures for symmetric rank-one updates. — Tech. Rep., Vol.CORR 90–03, Dept. Combinat. Optim., University of Waterloo, Ontario.
  • Wonham W.M. (1979): Linear Multivariable Control: A Geometric Approach, 2-nd Ed. — Berlin: Springer.
  • Xiao Y., Crusca F. and Chu E.K. (1996): Bilinear matrix inequalities in robust control: phase I—Problem formulation. — Tech. Rep., Vol.TR–96–3, Dept. Electr. Comp. Syst. Eng., Monash University, Caulfield 3145, Australia.
  • Yang Y. (1989): A new condition number of eigenvalue and its application in control theory. — J. Computat. Math., Vol.7, pp.15–21.
  • Yang Y. (1997): Robust System Design: Pole Assignment Approach, Ph.D. Thesis, Dept. Electr. Eng., University of Maryland at College Park, MD 20742, 1997.
  • Yang Y. and Tits A.L. (1995): Globally convergent algorithms for robust pole assignment by state feedback. — Tech. Rep., Dept. Electr. Eng. and Inst. Syst. Res., University of Maryland at College Park, MD 20742.
  • Yang Y. and Tits A.L. (1993): On robust pole assignment by state feedback. — Proc. Amer. Contr. Conf., San Francisco, pp.2765–2766.
  • Zhao Q. (1996): Measures for Least Change Secant Methods. — M.Sc. Thesis, Dept. Combinat. Optim., University of Waterloo, Ontario.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-amcv11i5p1035bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.