Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2001 | 11 | 3 | 705-718

Tytuł artykułu

Fuzzy versus probabilistic benefit/cost ratio analysis for public work projects


Treść / Zawartość

Warianty tytułu

Języki publikacji



The benefit/cost (B/C) ratio method is utilized in many government and public work projects to determine if the expected benefits provide an acceptable return on the estimated investment and costs. Many authors have studied probabilis- tic cash flows in recent years. They introduced some analytical methods which determine the probability distribution function of the net present value and in- ternal rate of return of a series of random discrete cash flows. They considered serially correlated cash flows and the uncertainty of future capital investment and reinvestment rates and they presented some formulae for the B/C ratio for probabilistic cash flows. In the paper, the expected value and the variance of a probabilistic cash flow are obtained by means of moments. Then a probabilistic B/C ratio is given. Fuzzy set theory has the capability of representing vague knowledge and allows mathematical operators and programming to be applied to the fuzzy domain. The theory is primarily concerned with quantifying the vagueness in human thoughts and perceptions. The fuzzy B/C ratios are devel- oped for a single investment project and for multiple projects having equal or different lives.

Słowa kluczowe








Opis fizyczny




  • Department of Industrial Engineering, Istanbul Technical University, 80680 Macka-Istanbul, Turkey


  • Baas S.M. and Kwakernaak H. (1977): Rating and ranking multiple-aspect alternatives using fuzzy sets. — Automatica, Vol.13, No.1, pp.47–58.
  • Benzion U. and Yagil J. (1987): On the discounting formula for a stream of independent risky cash flows. — Eng. Econom., Vol.32, No.4, pp.337–345.
  • Blank L.T. and Tarquin J.A. (1989): Engineering Economy, 3rd Ed. — Singapore: McGraw- Hill.
  • Bortolan G. and Degani R. (1985): A review of some methods for ranking fuzzy subsets. — Fuzzy Sets Syst., Vol.15, pp.1–19.
  • Boussabaine A.H. and Elhag T. (1999): Applying fuzzy techniques to cash flow analysis. — Constr. Manag. Econom., Vol.17, No.6, pp.745–755.
  • Buck J.R. and Askin R.G. (1986): Partial means in the economic risk analysis of projects. — Eng. Econom., Vol.31, No.3, pp.189–212.
  • Buckley J.U. (1987): The fuzzy mathematics of finance. — Fuzzy Sets Syst., Vol.21, pp.257– 273.
  • Canada J.R. and White J.A. (1980): Capital Investment Decision Analysis for Management and Engineering. — Englewood Cliffs, NJ: Prentice-Hall, Inc.
  • Chiadamrong N. (1999): An integrated fuzzy multi-criteria decision making method for manufacturing strategies selection. — Comp. Industr. Eng., Vol.37, No.1, pp.433–436.
  • Chang W. (1981): Ranking of fuzzy utilities with triangular membership functions. — Proc. Int. Conf. Policy Anal. and Inf. Systems, Tamkang University, R.O.C., pp.263–272.
  • Chen S.H. (1985): Ranking fuzzy numbers with maximizing and minimizing set. — Fuzzy Sets Syst., Vol.17, pp.113–129.
  • Chiu C. and Park C.S. (1994): Fuzzy cash flow analysis using present worth criterion. — Eng. Econom., Vol.39, No.2, pp.113-138.
  • Dubois D. and Prade H. (1983): Ranking fuzzy numbers in the setting of possibility theory. — Inf. Sci., Vol.30, pp.183–224.
  • Giacotto C. (1984): A simplifed approach to risk analysis in capital budgeting with serially correlated cash flows. — Eng. Econom., Vol.29, No.4, pp.273–286.
  • Hillier F.S. (1963): The derivation of probabilistic information for the evaluation of risky investments. — Manag. Sci., Vol.9, pp.443–457.
  • Jain R. (1976): Decision-making in the presence of fuzzy variables. — IEEE Trans. Syst. Man Cybern., Vol.6, pp.693–703.
  • Kahraman C., Tolga E. and Ulukan Z. (1995): Fuzzy flexibility analysis in automated manufacturing systems. — Proc. INRIA/IEEE Conf. Emerging Technologies and Factory Automation, Paris, France, Vol.3, pp.299–307.
  • Kahraman C., Tolga E. and Ulukan Z. (2000): Justification of manufacturing technologies using fuzzy benefit/cost ratio analysis. — Int. J. Prod. Econom., Vol.66, No.1, pp.45– 52.
  • Kaufmann A. and Gupta M.M. (1988): Fuzzy Mathematical Models in Engineering and Management Science. — Elsevier.
  • Kim K. and Park K.S. (1990): Ranking fuzzy numbers with index of optimism. — Fuzzy Sets Syst., Vol.35, pp.143–150.
  • Momoh J.A. and Zhu J. (1999): Multiple indices for optimal reactive power pricing and control. — Decision Support Systems, Vol.24, No.4, pp.223–232.
  • Morris W.T. (1968): Management Science: A Bayesian Introduction. — Englewood Cliffs, NJ: Prentice-Hall.
  • Park C.S. (1984): Probabilistic benefit-cost analysis. — Eng. Econom., Vol.29, No.2, pp.83– 100.
  • Park C.S. and Sharp-Bette G.P. (1990): Advanced Engineering Economics. — Singapore: Elsevier.
  • Schlaifer R. (1961): Introduction to Statistics for Business Decisions. — New York: McGraw-Hill.
  • Spahr R.W. (1982): Basic uncertainty in capital budgeting: Stochastic reinvestment rates. — Eng. Econom., Vol.27, No.4, pp.275–289.
  • Temponi C., Fard F.D. and Corley H.W. (1999): A fuzzy decision model for colour reproduction. — Int. J. Prod. Econom., Vol.58, No.1, pp.31–37.
  • Tufek ̧i S. and Young D.B. (1987): Moments of the present worths of general probabilistic c cash flows under random timing. — Eng. Econom., Vol.32, No.4, pp.303–336.
  • Wagle B. (1967): A statistical analysis of risk in capital investment projects. — Opers. Res. Quart., Vol.18, No.1, pp.13–33.
  • Wang M.-J. and Liang G.-S. (1995): Benefit/cost analysis using fuzzy concept. — Eng. Econom., Vol.40, No.4, pp.359–376.
  • Ward T.L. (1985): Discounted fuzzy cash flow analysis. — Proc. 1985 Fall Ind. Eng. Conf., Inst. Industr. Eng., pp.476–481.
  • Yager R.R. (1980): On choosing between fuzzy subsets. — Kybernetes, Vol.9, pp.151–154.
  • Young D. and Contreras L.E. (1975): Expected present worths of cash flows under uncertain timing. — Eng. Econom., Vol.20, No.4, pp.257–268.
  • Zadeh L.A. (1965): Fuzzy sets. — Inf. Contr., Vol.8, pp.338–353.
  • Zinn C.D., Lesso W.G. and Motazed R. (1977): A probabilistic approach to risk analysis in capital investment projects. — Eng. Econom., Vol.22, No.4, pp.239–260.

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.