ArticleOriginal scientific text

Title

Polylogarithms and arithmetic function spaces

Authors 1, 1

Affiliations

  1. Institut für Mathematik, Technische Universität Clausthal, Erzstraße 1, 38678 Clausthal-Zellerfeld, Germany

Bibliography

  1. L. Bieberbach, Analytische Fortsetzung, Springer, Berlin, 1955.
  2. A. Jonquière, Note sur le série xnns, Bull. Soc. Math. France 17 (1889), 142-152.
  3. D. S. Kubert, The universal ordinary distribution, ibid. 107 (1979), 179-202.
  4. L. Lewin, Structural Properties of Polylogarithms, Math. Surveys Monographs 37, Amer. Math. Soc., Providence, 1991.
  5. L. G. Lucht, Power series with multiplicative coefficients, Math. Z. 177 (1981), 359-374.
  6. L. G. Lucht and C. Methfessel, Recurrent sequences and affine functional equations, J. Number Theory 57 (1996), 105-113.
  7. L. G. Lucht and F. Tuttas, Mean values of multiplicative functions and natural boundaries of power series with multiplicative coefficients, J. London Math. Soc. 19 (1979), 25-34.
  8. J. Milnor, On polylogarithms, Hurwitz zeta functions, and the Kubert identities, Enseign. Math. 29 (1983), 281-322.
  9. A. J. van der Poorten, Some facts that should be better known, especially about rational functions, in: Number Theory and Applications (Banff, 1988), R. A. Mollin (ed.), Kluwer, 1989, 497-528.
  10. A. Schmalmack, Arithmetische Funktionen und holomorph fortsetzbare Potenzreihen, Dissertation, TU Clausthal, 1999.
  11. W. Schwarz, Fourier-Ramanujan-Entwicklungen zahlentheoretischer Funktionen und Anwendungen, Festschrift Wiss. Ges. Univ. Frankfurt, Franz Steiner Verlag, Wiesbaden, 1981, 399-415.
  12. W. Schwarz and J. Spilker, Arithmetical Functions, London Math. Soc. Lecture Note Ser. 184, Cambridge Univ. Press, Cambridge, 1994.
  13. E. Seneta, Regularly Varying Functions, Lecture Notes in Math. 508, Springer, Berlin, 1976.
Pages:
361-382
Main language of publication
English
Received
1999-05-31
Published
2000
Exact and natural sciences