ArticleOriginal scientific text

Title

On finite pseudorandom binary sequences IV: The Liouville function, II

Authors 1, 1, 1, 2, 3

Affiliations

  1. Institut de Mathématiques de Luminy, CNRS-UPR 9016, 163 avenue de Luminy, Case 907, 13288 Marseille Cedex 9, France
  2. Institut Élie Cartan, Université Henri Poincaré, B.P. 239, 54506 Vandœuvre-lès-Nancy Cedex, France
  3. Department of Algebra and Number Theory, Eötvös Loránd University, Múzeum krt. 6-8, 1088 Budapest, Hungary

Bibliography

  1. [CFMRS] J. Cassaigne, S. Ferenczi, C. Mauduit, J. Rivat and A. Sárközy, On finite pseudorandom binary sequences. III: The Liouville function, I, Acta Arith. 87 (1999), 367-390.
  2. [Ch] S. Chowla, The Riemann Hypothesis and Hilbert's Tenth Problem, Gordon and Breach, New York, 1965.
  3. [Ell] P. D. T. A. Elliott, Arithmetic Functions and Integer Products, Springer, New York, 1985.
  4. [HM] G. A. Hedlund and M. Morse, Symbolic dynamics, Amer. J. Math. 60 (1938), 815-866.
  5. [Que] M. Queffélec, Substitution Dynamical Systems-Spectral Analysis, Lecture Notes in Math. 1294, Springer, New York, 1987.
  6. [Sá] A. Sárközy, On multiplicative arithmetic functions satisfying a linear recursion, Studia Sci. Math. Hungar. 13 (1978), 79-104.
  7. [Sc] A. Schinzel, Remarks on the paper 'Sur certaines hypothèses concernant les nombres premiers', Acta Arith. 7 (1961/1962), 1-8.
  8. [ScSi] A. Schinzel and W. Sierpiński, Sur certaines hypothèses concernant les nombres premiers, ibid. 4 (1958), 185-208; Corrigendum: ibid. 5 (1959), 259.
Pages:
343-359
Main language of publication
English
Received
1999-03-09
Accepted
2000-03-08
Published
2000
Exact and natural sciences