ArticleOriginal scientific text

Title

The Diophantine equation f(x) = g(y)

Authors 1, 2

Affiliations

  1. Mathematisches Institut, Universität Basel, Rheinsprung 21, 4051 Basel, Switzerland
  2. Institut für Mathematik (A), Technische Universität Graz, Steyrergasse 30, 8010 Graz, Austria

Keywords

Ritt's second theorem, reducibility, Dickson polynomials, Diophantine equations

Bibliography

  1. R. M. Avanzi and U. Zannier, Genus one curves defined by separated variable polynomials, Acta Arith., to appear.
  2. A. Baker, Bounds for solutions of superelliptic equations, Proc. Cambridge Philos. Soc. 65 (1969), 439-444.
  3. F. Beukers, T. N. Shorey and R. Tijdeman, Irreducibility of polynomials and arithmetic progressions with equal product of terms, in: [21], pp. 11-26.
  4. Yu. Bilu, Integral points and Galois covers, Mat. Contemp. 14 (1998), 1-11.
  5. Yu. Bilu, Quadratic factors of f(x)-g(y), Acta Arith. 90 (1999), 341-355.
  6. Yu. F. Bilu, B. Brindza, Á. Pintér and R. F. Tichy, On some diophantine problems related to power sums and binomial coefficients, in preparation.
  7. Yu. Bilu and G. Hanrot, Solving superelliptic Diophantine equations by Baker's method, Compositio Math. 112 (1998), 273-312.
  8. Yu. F. Bilu, T. Stoll and R. F. Tichy, Diophantine equations for the Meixner polynomials, in preparation.
  9. B. Brindza and Á. Pintér, On the irreducibility of some polynomials in two variables, Acta Arith. 82 (1997), 303-307.
  10. Y. Bugeaud, Bounds for the solutions of superelliptic equations, Compositio Math. 107 (1997), 187-219.
  11. P. Cassou-Noguès et J.-M. Couveignes, Factorisations explicites de g(y)-h(z), Acta Arith. 87 (1999), 291-317.
  12. H. Davenport, D. J. Lewis and A. Schinzel, Equations of the form f(x) = g(y), Quart. J. Math. Oxford Ser. (2) 12 (1961), 304-312.
  13. J.-H. Evertse and J. H. Silverman, Uniform bounds for the number of solutions to Yn=f(X), Math. Proc. Cambridge Philos. Soc. 100 (1986), 237-248.
  14. W. Feit, On symmetric balanced incomplete block designs with doubly transitive automorphism groups, J. Combin. Theory Ser. A 14 (1973), 221-247.
  15. W. Feit, Some consequences of the classification of finite simple groups, in: Proc. Sympos. Pure Math. 37, Amer. Math. Soc., 1980, 175-181.
  16. M. Fried, The field of definition of function fields and a problem in the reducibility of polynomials in two variables, Illinois J. Math. 17 (1973), 128-146.
  17. M. Fried, Arithmetical properties of function fields (II). The generalized Schur problem, Acta Arith. 25 (1973/74), 225-258.
  18. M. Fried, On a theorem of Ritt and related Diophantine problems, J. Reine Angew. Math. 264 (1974), 40-55.
  19. M. Fried, Exposition on an arithmetic-group theoretic connection via Riemann's existence theorem, in: Proc. Sympos. Pure Math. 37, Amer. Math. Soc., 1980, 571-601.
  20. M. Fried, Variables separated polynomials, the genus 0 problem, and moduli spaces, in: [21], pp. 169-228.
  21. K. Győry, H. Iwaniec and J. Urbanowicz (eds.), Number Theory in Progress (Proc. Internat. Conf. in Number Theory in Honor of A. Schinzel, Zakopane, 1997), de Gruyter, 1999.
  22. P. Kirschenhofer, A. Pethő and R. F. Tichy, On analytical and Diophantine properties of a family of counting polynomials, Acta Sci. Math. (Szeged) 65 (1999), 47-59.
  23. S. Lang, Fundamentals of Diophantine Geometry, Springer, 1983.
  24. W. J. LeVeque, On the equation ym=f(x), Acta Arith. 9 (1964), 209-219.
  25. R. Lidl, G. L. Mullen and G. Turnwald, Dickson Polynomials, Pitman Monographs Surveys Pure Appl. Math. 65, Longman Sci. Tech., 1993.
  26. J. F. Ritt, Prime and composite polynomials, Trans. Amer. Math. Soc. 23 (1922), 51-66.
  27. A. Schinzel, Selected Topics on Polynomials, The Univ. of Michigan Press, Ann Arbor, 1982.
  28. J.-P. Serre, Lectures on the Mordell-Weil Theorem, Aspects Math. E15, Vieweg, Braunschweig, 1989.
  29. C. L. Siegel, The integer solutions of the equation y2=axn+bxn-1+...+k, J. London Math. Soc. 1 (1926), 66-68; also: Gesammelte Abhandlungen, Band 1, 207-208.
  30. C. L. Siegel, Über einige Anwendungen Diophantischer Approximationen, Abh. Preuss. Akad. Wiss. Phys.-Math. Kl., 1929, Nr. 1; also: Gesammelte Abhandlungen, Band 1, 209-266.
  31. V. G. Sprindžuk, Classical Diophantine Equations in Two Unknowns, Nauka, Moscow, 1982 (in Russian); English transl.: Lecture Notes in Math. 1559, Springer, 1994.
  32. G. Turnwald, On Schur's conjecture, J. Austral. Math. Soc. 58 (1995), 312-357.
  33. H. A. Tverberg, A study in irreducibility of polynomials, Ph.D. thesis, Dept. of Math., Univ. of Bergen, 1968.
  34. P. M. Voutier, On the number of S-integral solutions to Ym=f(X), Monatsh. Math. 119 (1995), 125-139.
Pages:
261-288
Main language of publication
English
Received
1999-12-17
Published
2000
Exact and natural sciences