ArticleOriginal scientific text

Title

Ray class fields of global function fields with many rational places

Authors 1

Affiliations

  1. Afd. wiskunde, Rijksuniversiteit Groningen, Blauwborgje 3 NL-9747 AC Groningen, The Netherlands

Keywords

ray class fields, global function fields, characteristic p, curves with many rational points, S-class numbers

Bibliography

  1. R. Auer, Ray class fields of global function fields with many rational places, Dissertation at the University of Oldenburg, www.bis.uni-oldenburg.de/dissertation/ediss.html, 1999.
  2. J. W. S. Cassels and A. Fröhlich, Algebraic Number Theory, Academic Press, New York, 1967.
  3. H. Cohen, F. Diaz y Diaz and M. Olivier, Computing ray class groups, conductors and discriminants, in: Algorithmic Number Theory, H. Cohen (ed.), Lecture Notes in Comput. Sci. 1122, Springer, 1996, 49-57.
  4. K M. Daberkow, C. Fieker, J. Klüners, M. Pohst, K. Roegner, M. Schörnig and K. Wildanger, KANT V4, J. Symbolic Comput. 24 (1997), 267-283.
  5. R. Fuhrmann and F. Torres, The genus of curves over finite fields with many rational points, Manuscripta Math. 89 (1996), 103-106.
  6. A. Garcia and H. Stichtenoth, Algebraic function fields over finite fields with many rational places, IEEE Trans. Inform. Theory 41 (1995), 1548-1563.
  7. G. van der Geer and M. van der Vlugt, How to construct curves over finite fields with many points, in: Arithmetic Geometry (Cortona, 1984), F. Catanese (ed.), Cambridge Univ. Press, 1997, 169-189.
  8. G. van der Geer and M. van der Vlugt, Constructing curves over finite fields with many points by solving linear equations, preprint, 1997.
  9. G. van der Geer and M. van der Vlugt, Tables of curves with many points, preprint at http://www.wins.uva.nl/geer, 1999.
  10. H H. Hasse, Number Theory, Springer, Berlin, 1980.
  11. D. R. Hayes, Explicit class field theory in global function fields, in: Studies in Algebra and Number Theory, Adv. in Math. Suppl. Stud. 6, Academic Press, 1979, 173-217.
  12. H. Kisilevsky, Multiplicative independence in function fields, J. Number Theory 44 (1993), 352-355.
  13. K. Lauter, Ray class field constructions of curves over finite fields with many rational points, in: Algorithmic Number Theory, H. Cohen (ed.), Lecture Notes in Comput. Sci. 1122, Springer, 1996, 187-195.
  14. K. Lauter, Deligne-Lusztig curves as ray class fields, Manuscripta Math. 98 (1999), 87-96.
  15. K. Lauter, A formula for constructing curves over finite fields with many rational points, J. Number Theory 74 (1999), 56-72.
  16. J. Neukirch, Algebraische Zahlentheorie, Springer, Berlin, 1991.
  17. H. Niederreiter, Nets, (t,s)-sequences, and algebraic curves over finite fields with many rational points, in: Proc. Internat. Congress of Math. (Berlin, 1998), Documenta Math. Extra Vol. ICM III (1998), 377-386.
  18. H. Niederreiter and C. P. Xing, Explicit global function fields over the binary field with many rational places, Acta Arith. 75 (1996), 383-396.
  19. H. Niederreiter and C. P. Xing, Cyclotomic function fields, Hilbert class fields, and global function fields with many rational places, ibid. 79 (1997), 59-76.
  20. H. Niederreiter and C. P. Xing, Drinfeld modules of rank 1 and algebraic curves with many rational points. II, ibid. 81 (1997), 81-100.
  21. H. Niederreiter and C. P. Xing, Algebraic curves over finite fields with many rational points, in: Proc. Number Theory Conf. (Eger, 1996), de Gruyter, 1998, 423-443.
  22. H. Niederreiter and C. P. Xing, Global function fields with many rational places over the ternary field, Acta Arith. 83 (1998), 65-86.
  23. H. Niederreiter and C. P. Xing, Global function fields with many rational places over the quinary field, Demonstratio Math. 30 (1997), 919-930.
  24. H. Niederreiter and C. P. Xing, Global function fields with many rational places over the quinary field. II, Acta Arith. 86 (1998), 277-288.
  25. H. Niederreiter and C. P. Xing, Algebraic curves with many rational points over finite fields of characteristic 2, in: Number Theory in Progress (Zakopane, 1997), Vol. 1, de Gruyter, 1999, 359-380.
  26. H. Niederreiter and C. P. Xing, A general method of constructing global function fields with many rational places, in: Algorithmic Number Theory (Portland, 1998), Lecture Notes in Comput. Sci. 1423, Springer, 1998, 555-566.
  27. H. Niederreiter and C. P. Xing, Algebraic curves over finite fields with many rational points and their applications, in: Number Theory, V. C. Dumir et al. (eds.), Indian National Science Academy, to appear.
  28. H. Niederreiter and C. P. Xing, Global function fields with many rational places and their applications, Contemp. Math. 225 (1999), 87-111.
  29. J. P. Pedersen, A function field related to the Ree group, in: Coding Theory and Algebraic Geometry (Luminy, 1991), H. Stichtenoth and M. A. Tsfasman (eds.), Lecture Notes in Math. 1518, Springer, Berlin, 1992, 122-131.
  30. M. Perret, Tours ramifiées infinies de corps de classes, J. Number Theory 38 (1991), 300-322.
  31. M. Rosen, S-units and S-class group in algebraic function fields, J. Algebra 26 (1973), 98-108.
  32. M. Rosen, The Hilbert class field in function fields, Exposition. Math. 5 (1987), 365-378.
  33. R. Schoof, Algebraic Curves and Coding Theory, UTM 336 (1990), Univ. of Trento.
  34. J.-P. Serre, Sur le nombre des points rationnelles d'une courbe algébrique sur un corps fini, C. R. Acad. Sci. Paris Sér. I 296 (1983), 397-402.
  35. J.-P. Serre, Nombres de points des courbes algébrique sur _q, Sém. Théor. Nombres Bordeaux 22 (1982/83).
  36. J.-P. Serre, Résumé des cours de 1983-1984, Annuaire du Collège de France, 1984, 79-83.
  37. H. Stichtenoth, Algebraic Function Fields and Codes, Springer, Berlin, 1993.
  38. C. P. Xing and H. Niederreiter, Drinfel'd modules of rank 1 and algebraic curves with many rational points, Monatsh. Math. 127 (1999), 219-241.
Pages:
97-122
Main language of publication
English
Received
1998-04-24
Accepted
1999-09-01
Published
2000
Exact and natural sciences