ArticleOriginal scientific text
Title
A generalization of Sturmian sequences: Combinatorial structure and transcendence
Authors 1, 1
Affiliations
- Department of Mathematics, University of North Texas, Denton, TX 76203-5116, U.S.A.
Bibliography
- J.-P. Allouche and L. Q. Zamboni, Algebraic irrational binary numbers cannot be fixed points of non-trivial constant length or primitive morphisms, J. Number Theory 69 (1998), 119-124.
- P. Arnoux and S. Ito, Pisot substitutions and Rauzy fractals, preprint, 1999.
- P. Arnoux et G. Rauzy, Représentation géométrique de suites de complexité
, Bull. Soc. Math. France 119 (1991), 199-215. - J. Berstel, Mots de Fibonacci, Séminaire d'Informatique Théorique, LITP, Universités Paris 6-7 (1980-1981), 57-78.
- J. Berstel et P. Séébold, Morphismes de Sturm, Bull. Belg. Math. Soc. 1 (1994), 175-189.
- V. Berthé, Fréquences des facteurs des suites sturmiennes, Theoret. Comput. Sci. 165 (1996), 295-309.
- M. G. Castelli, F. Mignosi and A. Restivo, Fine and Wilf's theorem for three periods and a generalization of sturmian words, ibid. 218 (1999), 83-94.
- N. Chekhova, Les suites d'Arnoux-Rauzy : algorithme d'approximation et propriétés ergodiques, preprint, 1998.
- N. Chekhova, P. Hubert et A. Messaoudi, Propriétés combinatoires, ergodiques et arithmétiques de la substitution de Tribonacci, J. Théor. Nombres Bordeaux, to appear.
- E. M. Coven and G. A. Hedlund, Sequences with minimal block growth, Math. Systems Theory 7 (1973), 138-153.
- A. de Luca and F. Mignosi, Some combinatorial properties of Sturmian words, Theoret. Comput. Sci. 136 (1994), 361-385.
- F. Durand, A characterization of substitutive sequences using return words, Discrete Math. 179 (1998), 89-101.
- F. Durand, Linearly recurrent subshifts, Ergod. Theory Dynam. Systems, to appear.
- F. Durand and B. Host, private communication.
- F. Durand, B. Host and C. Skau, Substitution dynamical systems, Bratteli diagrams and dimension groups, Ergod. Theory Dynam. Systems 19 (1999), 953-993.
- S. Ferenczi, Les transformations de Chacon : combinatoire, structure géométrique, lien avec les systèmes de complexité
, Bull. Soc. Math. France 123 (1995), 271-292. - S. Ferenczi and C. Mauduit, Transcendence of numbers with a low complexity expansion, J. Number Theory 67 (1997), 146-161.
- C. Holton and L. Q. Zamboni, Descendants of primitive substitutions, Theory Comput. Syst. 32 (1998), 133-157.
- C. Holton and L. Q. Zamboni, Directed graphs and substitutions, in: From Crystals to Chaos, P. Hubert, R. Lima and S. Vaienti (eds.), World Sci., 1999, to appear.
- J. H. Loxton and A. van der Poorten, Arithmetic properties of automata: regular sequences, J. Reine Angew. Math. 392 (1988), 57-69.
- K. Mahler, Lectures on Diophantine Approximations, Part I:
-adic Numbers and Roth's Theorem, Univ. of Notre Dame, 1961. - K. Mahler, Arithmetische Eigenschaften einer Klasse von Dezimalbrüchen, Proc. Konink. Nederl. Akad. Wetensch. Ser. A 40 (1937), 421-428.
- F. Mignosi, Infinite words with linear subword complexity, Theoret. Comput. Sci. 65 (1989), 221-242.
- F. Mignosi, On the number of factors of Sturmian words, ibid. 82 (1991), 71-84.
- F. Mignosi and G. Pirillo, Repetitions in the Fibonacci infinite word, RAIRO Inform. Théor. Appl. 26 (1992), 199-204.
- M. Morse and G. A. Hedlund, Symbolic dynamics, Amer. J. Math. 60 (1938), 815-866.
- M. Morse and G. A. Hedlund, Symbolic dynamics II: Sturmian sequences, ibid. 62 (1940), 1-42.
- M. Queffélec, Substitution Dynamical Systems-Spectral Analysis, Lecture Notes in Math. 1294, Springer, 1987.
- G. Rauzy, Mots infinis en arithmétique, in: Automata on Infinite Words, M. Nivat and D. Perrin (eds.), Lecture Notes in Comput. Sci. 192, Springer, Berlin, 1985, 165-171.
- G. Rauzy, Nombres algébriques et substitutions, Bull. Soc. Math. France 110 (1982), 147-178.
- G. Rote, Sequences with subword complexity
, J. Number Theory 46 (1994), 196-213. - J.-I. Tamura, A class of transcendental numbers having explicit
-adic and Jacobi-Perron expansions of arbitrary dimension, Acta Arith. 71 (1995), 301-329. - N. Wozny and L. Q. Zamboni, Frequencies of factors in Arnoux-Rauzy sequences, Acta Arith., to appear.
- L. Q. Zamboni, Une généralisation du théorème de Lagrange sur le développement en fraction continue, C. R. Acad. Sci. Paris Sér. I, 327 (1998), 527-530.