ArticleOriginal scientific textGauss sum for the adjoint representation of
Title
Gauss sum for the adjoint representation of and
Authors 1, 1, 1, 1
Affiliations
- Department of Mathematics, Seoul National University, Seoul 151-742, Korea
Keywords
adjoint representation, , , Gauss sum,
Bibliography
- A. Borel, Linear Algebraic Groups, Benjamin, New York, 1969.
- R. W. Carter, Finite Groups of Lie Type; Conjugacy Classes and Complex Characters, Wiley, New York, 1985.
- W. Fulton and J. Harris, Representation Theory, Springer, New York, 1991.
- J. E. Humphreys, Linear Algebraic Groups, Grad. Texts in Math. 21, Springer, 1975.
- D. S. Kim, Gauss sums for general and special linear groups over a finite field, Arch. Math. (Basel) 69 (1997), 297-304.
- D. S. Kim, Gauss sums for
, Acta Arith. 80 (1997), 343-365. - D. S. Kim, Gauss sum for
, J. Korean Math. Soc. 34 (1997), 871-894. - D. S. Kim, Gauss sums for
, Finite Fields Appl. 4 (1998), 62-86. - D. S. Kim, Gauss sum for
, Glasgow Math. J. 40 (1998), 79-95. - D. S. Kim, Gauss sums for symplectic groups over a finite field, Monatsh. Math., to appear.
- D. S. Kim and I.-S. Lee, Gauss sums for
, Acta Arith. 78 (1996), 75-89. - D. S. Kim and Y. H. Park, Gauss sums for orthogonal groups over a finite field of characteristic two, ibid. 82 (1997), 331-357.
- I.-S. Lee and K. H. Park, Gauss sums for
, Bull. Korean Math. Soc. 34 (1997), 305-315. - K.-H. Park, Gauss sum for representations of
and , thesis, Seoul National University, 1998.
Additional information
http://matwbn.icm.edu.pl/ksiazki/aa/aa95/aa9511.pdf https://www.impan.pl/pl/wydawnictwa/czasopisma-i-serie-wydawnicze/acta-arithmetica/all/95/1/73932/gauss-sum-for-the-adjoint-representation-of-gl-n-q-and-sl-n-q