ArticleOriginal scientific text

Title

Gauss sum for the adjoint representation of GLn(q) and SLn(q)

Authors 1, 1, 1, 1

Affiliations

  1. Department of Mathematics, Seoul National University, Seoul 151-742, Korea

Keywords

adjoint representation, GLn(q), SLn(q), Gauss sum, PGLn(q)

Bibliography

  1. A. Borel, Linear Algebraic Groups, Benjamin, New York, 1969.
  2. R. W. Carter, Finite Groups of Lie Type; Conjugacy Classes and Complex Characters, Wiley, New York, 1985.
  3. W. Fulton and J. Harris, Representation Theory, Springer, New York, 1991.
  4. J. E. Humphreys, Linear Algebraic Groups, Grad. Texts in Math. 21, Springer, 1975.
  5. D. S. Kim, Gauss sums for general and special linear groups over a finite field, Arch. Math. (Basel) 69 (1997), 297-304.
  6. D. S. Kim, Gauss sums for O-(2n,q), Acta Arith. 80 (1997), 343-365.
  7. D. S. Kim, Gauss sum for U(2n+1,q2), J. Korean Math. Soc. 34 (1997), 871-894.
  8. D. S. Kim, Gauss sums for O(2n+1,q), Finite Fields Appl. 4 (1998), 62-86.
  9. D. S. Kim, Gauss sum for U(2n,q2), Glasgow Math. J. 40 (1998), 79-95.
  10. D. S. Kim, Gauss sums for symplectic groups over a finite field, Monatsh. Math., to appear.
  11. D. S. Kim and I.-S. Lee, Gauss sums for O+(2n,q), Acta Arith. 78 (1996), 75-89.
  12. D. S. Kim and Y. H. Park, Gauss sums for orthogonal groups over a finite field of characteristic two, ibid. 82 (1997), 331-357.
  13. I.-S. Lee and K. H. Park, Gauss sums for G2(q), Bull. Korean Math. Soc. 34 (1997), 305-315.
  14. K.-H. Park, Gauss sum for representations of GLn(q) and SLn(q), thesis, Seoul National University, 1998.

Additional information

http://matwbn.icm.edu.pl/ksiazki/aa/aa95/aa9511.pdf https://www.impan.pl/pl/wydawnictwa/czasopisma-i-serie-wydawnicze/acta-arithmetica/all/95/1/73932/gauss-sum-for-the-adjoint-representation-of-gl-n-q-and-sl-n-q

Pages:
1-16
Main language of publication
English
Received
1998-08-25
Accepted
2000-03-06
Published
2000
Exact and natural sciences