ArticleOriginal scientific text

Title

On the largest prime factor of integers

Authors 1, 2

Affiliations

  1. Institute of Mathematics, Academia Sinica, Beijing, 100080, China
  2. Department of Mathematics, The University of Hong Kong, Pokfulam Road, Hong Kong

Bibliography

  1. A. Balog, Numbers with a large prime factor, Studia Sci. Math. Hungar. 15 (1980), 139-146.
  2. A. Balog, Numbers with a large prime factor II, in: Topics in Classical Number Theory, Colloq. Math. Soc. János Bolyai 34, Elsevier, North-Holland, Amsterdam, 1984, 49-67.
  3. A. Balog, G. Harman and J. Pintz, Numbers with a large prime factor IV, J. London Math. Soc. (2) 28 (1983), 218-226.
  4. J.-M. Deshouillers and H. Iwaniec, Power mean-values for Dirichlet's polynomials and the Riemann zeta-function, II, Acta Arith. 43 (1984), 305-312.
  5. G. Harman, On the distribution of αp modulo one, J. London Math. Soc. (2) 27 (1983), 9-18.
  6. G. Harman, On the distribution of αp modulo one II, Proc. London Math. Soc. (3) 72 (1996), 241-260.
  7. D. R. Heath-Brown, The largest prime factor of the integers in an interval, Sci. China Ser. A 26 (1996), 385-411 (in Chinese); Sci. China Ser. A 39 (1996), 449-476.
  8. D. R. Heath-Brown and C. Jia, The largest prime factor of the integers in an interval, II, J. Reine Angew. Math. 498 (1998), 35-59.
  9. C. Jia, On the distribution of αp modulo one, J. Number Theory 45 (1993), 241-253.
  10. C. Jia, On the distribution of αp modulo one, II, preprint.
  11. M. Jutila, On numbers with a large prime factor, J. Indian Math. Soc. (N.S.) 37 (1973), 43-53.
Pages:
17-48
Main language of publication
English
Received
1999-04-26
Accepted
1999-10-10
Published
2000
Exact and natural sciences