ArticleOriginal scientific text
Title
On the largest prime factor of integers
Authors 1, 2
Affiliations
- Institute of Mathematics, Academia Sinica, Beijing, 100080, China
- Department of Mathematics, The University of Hong Kong, Pokfulam Road, Hong Kong
Bibliography
- A. Balog, Numbers with a large prime factor, Studia Sci. Math. Hungar. 15 (1980), 139-146.
- A. Balog, Numbers with a large prime factor II, in: Topics in Classical Number Theory, Colloq. Math. Soc. János Bolyai 34, Elsevier, North-Holland, Amsterdam, 1984, 49-67.
- A. Balog, G. Harman and J. Pintz, Numbers with a large prime factor IV, J. London Math. Soc. (2) 28 (1983), 218-226.
- J.-M. Deshouillers and H. Iwaniec, Power mean-values for Dirichlet's polynomials and the Riemann zeta-function, II, Acta Arith. 43 (1984), 305-312.
- G. Harman, On the distribution of αp modulo one, J. London Math. Soc. (2) 27 (1983), 9-18.
- G. Harman, On the distribution of αp modulo one II, Proc. London Math. Soc. (3) 72 (1996), 241-260.
- D. R. Heath-Brown, The largest prime factor of the integers in an interval, Sci. China Ser. A 26 (1996), 385-411 (in Chinese); Sci. China Ser. A 39 (1996), 449-476.
- D. R. Heath-Brown and C. Jia, The largest prime factor of the integers in an interval, II, J. Reine Angew. Math. 498 (1998), 35-59.
- C. Jia, On the distribution of αp modulo one, J. Number Theory 45 (1993), 241-253.
- C. Jia, On the distribution of αp modulo one, II, preprint.
- M. Jutila, On numbers with a large prime factor, J. Indian Math. Soc. (N.S.) 37 (1973), 43-53.