ArticleOriginal scientific text

Title

θ-congruent numbers and elliptic curves

Authors 1

Affiliations

  1. Department of Mathematics, Ochanomizu University, Otsuka, Tokyo 112-8610, Japan

Bibliography

  1. B. J. Birch, Elliptic curves and modular functions, in: Symposia Math. IV (Roma, 1968/69), Academic Press, 1970, 27-32.
  2. B. J. Birch, Heegner points of elliptic curves, in: Symposia Math. XV (Roma, 1973), Academic Press, 1975, 441-445.
  3. J. S. Chahal, On an identity of Desboves, Proc. Japan Acad. Ser. A 60 (1984), 105-108.
  4. G. Frey, Some aspects of the theory of elliptic curves over number fields, Exposition. Math. 4 (1986), 35-66.
  5. R. Fricke, Lehrbuch der Algebra III, Braunschweig, 1928.
  6. M. Fujiwara, θ-congruent numbers, in: Number Theory, K. Győry, A. Pethő, and V. Sós (eds.), de Gruyter, 1997, 235-241.
  7. B. Gross and D. Zagier, Heegner points and derivatives of L-series, Invent. Math. 84 (1986), 225-320.
  8. P. Monsky, Mock Heegner points and congruent numbers, Math. Z. 204 (1990), 45-68.
  9. P. Serf, Congruent numbers and elliptic curves, in: Computational Number Theory, A. Pethő et al. (eds.), de Gruyter, 1991, 227-238.
  10. J. H. Silverman, The Arithmetic of Elliptic Curves, Springer, New York, 1986.
  11. A. Wiman, Über den Rang von Kurven y2=x(x+a)(x+b), Acta Math. 76 (1944), 225-251.
Pages:
153-160
Main language of publication
English
Received
1998-11-24
Accepted
1999-12-13
Published
2000
Exact and natural sciences