ArticleOriginal scientific text
Title
θ-congruent numbers and elliptic curves
Authors 1
Affiliations
- Department of Mathematics, Ochanomizu University, Otsuka, Tokyo 112-8610, Japan
Bibliography
- B. J. Birch, Elliptic curves and modular functions, in: Symposia Math. IV (Roma, 1968/69), Academic Press, 1970, 27-32.
- B. J. Birch, Heegner points of elliptic curves, in: Symposia Math. XV (Roma, 1973), Academic Press, 1975, 441-445.
- J. S. Chahal, On an identity of Desboves, Proc. Japan Acad. Ser. A 60 (1984), 105-108.
- G. Frey, Some aspects of the theory of elliptic curves over number fields, Exposition. Math. 4 (1986), 35-66.
- R. Fricke, Lehrbuch der Algebra III, Braunschweig, 1928.
- M. Fujiwara, θ-congruent numbers, in: Number Theory, K. Győry, A. Pethő, and V. Sós (eds.), de Gruyter, 1997, 235-241.
- B. Gross and D. Zagier, Heegner points and derivatives of L-series, Invent. Math. 84 (1986), 225-320.
- P. Monsky, Mock Heegner points and congruent numbers, Math. Z. 204 (1990), 45-68.
- P. Serf, Congruent numbers and elliptic curves, in: Computational Number Theory, A. Pethő et al. (eds.), de Gruyter, 1991, 227-238.
- J. H. Silverman, The Arithmetic of Elliptic Curves, Springer, New York, 1986.
- A. Wiman, Über den Rang von Kurven
, Acta Math. 76 (1944), 225-251.