ArticleOriginal scientific text

Title

A parametric family of elliptic curves

Authors 1

Affiliations

  1. Department of Mathematics University of Zagreb Bijenička cesta 30 10000 Zagreb, Croatia

Bibliography

  1. A. Baker and H. Davenport, The equations 3x2-2=y2 and 8x2-7=z2, Quart. J. Math. Oxford Ser. (2) 20 (1969), 129-137.
  2. A. Bremner, R. J. Stroeker and N. Tzanakis, On sums of consecutive squares, J. Number Theory 62 (1997), 39-70.
  3. J. E. Cremona, Algorithms for Modular Elliptic Curves, Cambridge Univ. Press, 1997.
  4. L. E. Dickson, History of the Theory of Numbers, Vol. 2, Chelsea, New York, 1966, pp. 513-520.
  5. A. Dujella, The problem of the extension of a parametric family of Diophantine triples, Publ. Math. Debrecen 51 (1997), 311-322.
  6. A. Dujella, A proof of the Hoggatt-Bergum conjecture, Proc. Amer. Math. Soc. 127 (1999), 1999-2005.
  7. A. Dujella, Diophantine triples and construction of high-rank elliptic curves over ℚ with three non-trivial 2-torsion points, Rocky Mountain J. Math., to appear.
  8. A. Dujella and A. Pethő, Generalization of a theorem of Baker and Davenport, Quart. J. Math. Oxford Ser. (2) (49) (1998), 291-306.
  9. A. Dujella and A. Pethő, Integer points on a family of elliptic curves, Publ. Math. Debrecen, to appear.
  10. S. Fermigier, Étude expérimentale du rang de familles de courbes elliptiques sur ℚ, Experiment. Math. 5 (1996), 119-130.
  11. J. Gebel, A. Pethő and H. G. Zimmer, Computing integral points on elliptic curve, Acta Arith. 68 (1994), 171-192.
  12. A. Grelak and A. Grytczuk, On the diophantine equation ax2-by2=c, Publ. Math. Debrecen 44 (1994), 191-199.
  13. C. M. Grinstead, On a method of solving a class of Diophantine equations, Math. Comp. 32 (1978), 936-940.
  14. D. Husemöller, Elliptic Curves, Springer, New York, 1987.
  15. A. Knapp, Elliptic Curves, Princeton Univ. Press, 1992.
  16. T. Nagell, Introduction to Number Theory, Almqvist, Stockholm; Wiley, New York, 1951.
  17. T. Nagell, Contributions to the theory of a category of Diophantine equations of the second degree with two unknowns, Nova Acta Soc. Sci. Upsal. 16 (1954), 1-38.
  18. I. Niven, H. S. Zuckerman and H. L. Montgomery, An Introduction to the Theory of Numbers, Wiley, New York, 1991.
  19. K. Ono, Euler's concordant forms, Acta Arith. 78 (1996), 101-123.
  20. J. H. Rickert, Simultaneous rational approximations and related diophantine equations, Math. Proc. Cambridge Philos. Soc. 113 (1993), 461-472.
  21. J. H. Silverman, Rational points on elliptic surfaces, preprint.
  22. SIMATH manual, Universität des Saarlandes, Saarbrücken, 1997.
Pages:
87-101
Main language of publication
English
Received
1999-04-06
Accepted
1999-12-21
Published
2000
Exact and natural sciences