Department of Mathematics University of Zagreb Bijenička cesta 30 10000 Zagreb, Croatia
Bibliografia
[1] A. Baker and H. Davenport, The equations $3x^2 - 2 = y^2$ and $8x^2 - 7 = z^2$, Quart. J. Math. Oxford Ser. (2) 20 (1969), 129-137.
[2] A. Bremner, R. J. Stroeker and N. Tzanakis, On sums of consecutive squares, J. Number Theory 62 (1997), 39-70.
[3] J. E. Cremona, Algorithms for Modular Elliptic Curves, Cambridge Univ. Press, 1997.
[4] L. E. Dickson, History of the Theory of Numbers, Vol. 2, Chelsea, New York, 1966, pp. 513-520.
[5] A. Dujella, The problem of the extension of a parametric family of Diophantine triples, Publ. Math. Debrecen 51 (1997), 311-322.
[6] A. Dujella, A proof of the Hoggatt-Bergum conjecture, Proc. Amer. Math. Soc. 127 (1999), 1999-2005.
[7] A. Dujella, Diophantine triples and construction of high-rank elliptic curves over ℚ with three non-trivial 2-torsion points, Rocky Mountain J. Math., to appear.
[8] A. Dujella and A. Pethő, Generalization of a theorem of Baker and Davenport, Quart. J. Math. Oxford Ser. (2) (49) (1998), 291-306.
[9] A. Dujella and A. Pethő, Integer points on a family of elliptic curves, Publ. Math. Debrecen, to appear.
[10] S. Fermigier, Étude expérimentale du rang de familles de courbes elliptiques sur ℚ, Experiment. Math. 5 (1996), 119-130.
[11] J. Gebel, A. Pethő and H. G. Zimmer, Computing integral points on elliptic curve, Acta Arith. 68 (1994), 171-192.
[12] A. Grelak and A. Grytczuk, On the diophantine equation $ax^2 - by^2 = c$, Publ. Math. Debrecen 44 (1994), 191-199.
[13] C. M. Grinstead, On a method of solving a class of Diophantine equations, Math. Comp. 32 (1978), 936-940.
[14] D. Husemöller, Elliptic Curves, Springer, New York, 1987.
[15] A. Knapp, Elliptic Curves, Princeton Univ. Press, 1992.
[16] T. Nagell, Introduction to Number Theory, Almqvist, Stockholm; Wiley, New York, 1951.
[17] T. Nagell, Contributions to the theory of a category of Diophantine equations of the second degree with two unknowns, Nova Acta Soc. Sci. Upsal. 16 (1954), 1-38.
[18] I. Niven, H. S. Zuckerman and H. L. Montgomery, An Introduction to the Theory of Numbers, Wiley, New York, 1991.