ArticleOriginal scientific text
Title
On the Barban-Davenport-Halberstam theorem: XIII
Authors 1
Affiliations
- School of Mathematics University of Wales Senghennydd Road Cardiff CF2 4YH, U.K.
Bibliography
- J. B. Friedlander and D. A. Goldston, Variance of distribution of primes in residue classes, Quart. J. Math. Oxford Ser. (2) 47 (1996), 313-336.
- D. A. Goldston, A lower bound for the second moment of primes in short intervals, Exposition. Math. 13 (1995), 366-376.
- S. Graham, An asymptotic estimate related to Selberg's sieve, J. Number Theory 10 (1978), 83-94.
- C. Hooley, Application of Sieve Methods to the Theory of Numbers, Cambridge Univ. Press, Cambridge, 1976.
- C. Hooley, On the Barban-Davenport-Halberstam theorem: I, J. Reine Angew. Math. 274/275 (1975), 206-223.
- C. Hooley, On the Barban-Davenport-Halberstam theorem: II, J. London Math. Soc. (2) 9 (1975), 625-636.
- C. Hooley, On the Barban-Davenport-Halberstam theorem: XII, in: Number Theory in Progress (Zakopane, 1997), Vol. II, de Gruyter, 1999, 893-910.
- H. Q. Liu, Lower bounds for sums of Barban-Davenport-Halberstam type (supplement), Manuscripta Math. 87 (1995), 159-166.
- H. L. Montgomery, Maximal variants of the large sieve, J. Fac. Sci. Univ. Tokyo Sect. 1A 28 (1982), 805-812.
- E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, Clarendon Press, Oxford, 1951.
- J. Vaaler, Some extremal functions in Fourier analysis, Bull. Amer. Math. Soc. (N.S.) 12 (1985), 183-216.