ArticleOriginal scientific text

Title

On the Barban-Davenport-Halberstam theorem: XIII

Authors 1

Affiliations

  1. School of Mathematics University of Wales Senghennydd Road Cardiff CF2 4YH, U.K.

Bibliography

  1. J. B. Friedlander and D. A. Goldston, Variance of distribution of primes in residue classes, Quart. J. Math. Oxford Ser. (2) 47 (1996), 313-336.
  2. D. A. Goldston, A lower bound for the second moment of primes in short intervals, Exposition. Math. 13 (1995), 366-376.
  3. S. Graham, An asymptotic estimate related to Selberg's sieve, J. Number Theory 10 (1978), 83-94.
  4. C. Hooley, Application of Sieve Methods to the Theory of Numbers, Cambridge Univ. Press, Cambridge, 1976.
  5. C. Hooley, On the Barban-Davenport-Halberstam theorem: I, J. Reine Angew. Math. 274/275 (1975), 206-223.
  6. C. Hooley, On the Barban-Davenport-Halberstam theorem: II, J. London Math. Soc. (2) 9 (1975), 625-636.
  7. C. Hooley, On the Barban-Davenport-Halberstam theorem: XII, in: Number Theory in Progress (Zakopane, 1997), Vol. II, de Gruyter, 1999, 893-910.
  8. H. Q. Liu, Lower bounds for sums of Barban-Davenport-Halberstam type (supplement), Manuscripta Math. 87 (1995), 159-166.
  9. H. L. Montgomery, Maximal variants of the large sieve, J. Fac. Sci. Univ. Tokyo Sect. 1A 28 (1982), 805-812.
  10. E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, Clarendon Press, Oxford, 1951.
  11. J. Vaaler, Some extremal functions in Fourier analysis, Bull. Amer. Math. Soc. (N.S.) 12 (1985), 183-216.
Pages:
53-86
Main language of publication
English
Received
1999-02-22
Published
2000
Exact and natural sciences